정규분포의 표준화는 왜하는걸까? & 변곡점은 어떤 점일까?
게시글 주소: https://m.orbi.kr/00012254198
저는 수학자가 아닌 그저 동네 수학 과외선생일 뿐입니다.
또한, 어쩌면 세상을 바꾸고 싶어하는 그냥 20대 청년일 수 있습니다.
어찌되었건, 저는 항상 노력합니다. 이 무언가가 누군가에게 힘이될 수 있기를..
이 칼럼은 이 글에 담긴 생각을 바탕으로 쓰게 되었습니다.
공부의 양은 어떻게 정할까? : http://orbi.kr/0008692499
- 공부의양은 생각의 양과 같고, 생각과 고민은 질문에서 나옵니다!
이렇게 쉽고 기본적인 내용이 어디에 도움이 될까요? : http://orbi.kr/00011592572
공신 방송 다녀온 후기 & 수학 칼럼 연재합니다. http://orbi.kr/00010768917
가장 쉬운 방식으로 개념을 이해해야해요 : http://orbi.kr/00010794675
이차방정식의 해법 해설 + 평행이동할때 왜 점은 +a인데 그래프는 -a일까? :
http://orbi.kr/00010789384
평행이동 해설 & 어떻게 곡선 위의 점의 접선은 한 점으로 정의될까? : http://orbi.kr/00010841663
곡선 위의 점의 접선 해설 & y=|x|는 왜 x=0에서 미분 불가능할까? : http://orbi.kr/00010980265
y=|x|는 왜 x=0에서 미분 불가능할까? & 유리화는 왜하는걸까? : http://orbi.kr/00011115763
유리화는 왜하는걸까? & 판별식이 음수일때 왜 이차방정식은 항상 0보다 클까? : http://orbi.kr/00011420287
판별식이 음수일때 왜 이차방정식은 항상 0보다 클까? & log a b 에서 a>0, a≠1이어야 할까?
http://orbi.kr/00011521076
log a b 에서 왜 a>0, a≠1이어야 할까? & 근과 계수의 관계를 어떻게 유도할까?:http://orbi.kr/00011588911
근과 계수의 관계를 어떻게 유도할까?& 왜 벡터의 크기를 제곱하면 내적이 나올까? http://orbi.kr/00011613898
왜 벡터의 크기를 제곱하면 내적이 나올까? & 이 점은 변곡점인가요http://orbi.kr/00011893846/
저번 칼럼은 이거였습니다!
이 점은 변곡점인가요? & 정규분포의 표준화는 왜하는걸까? https://orbi.kr/00012108382
정답갑니다.
이제, 우리는 P(0
평균에서 표준편차만큼 두칸 떨어진 곳과 평균 사이의 넓이!
그렇게 생각하는데에 가장 좋은 정규분포는 평균이 0, 표준편차가 1일때라구요.
이렇게 이해해주시고 풀어주시면 나중에 표준화를 헷갈릴 이유가 없습니다!
그렇다면 다음칼럼 가겠습니다.
이계도함수의 정의부터 살펴봅시다!
추가적으로 이 문제를 한번 더 생각해봅시다!
도함수의 도함수를 생각해보세요! 도함수는 무엇이었나요? x에 따라서 원함수 f(x)의 미분계수를 함숫값으로 대응한 함수였습니다.
도함수의 도함수도 x를 대입했을 때 f'(x)의 미분계수를 함숫값으로 대응한 함수겠지요.
미분계수는 무엇이었나요? 접선의 기울기였습니다!!
이쯤되면 명백하게 생각할 수 있겠죠!
정답은 다음 칼럼에 갖고오도록 하겠습니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
커로 모음 1
국어 - 5등급 (고1 6모) 수학 - 6등급 (고1 6모) 영어 - 2등급...
-
역시 황금세대는 0
02 03이라고 생각한다...
-
고양이 되서 평생 냐옹냐옹만 하다가 가끔씩 냥냥펀치도 날려주고 그렇게 좋은 주인...
-
강사 기출강의 들으면 마더텅이나 자이같은 기출문제집 풀 필요 없나요?
-
사촌형들 왤케 다 잘생기고 형수님도 이쁘시냐
-
션티 nf 0
고2 모고 기준 4등급 지금 키스타트 거의 끝나서 키스로직하려고 했는데 뭔가 그냥...
-
참 신기함 난 갠적으로 질문하기도 너무 힘들던데 막 상담도 해주고 밥도 사주고 보면 싱기함
-
원서철때 진학사 3칸됨 화장연+영어2의 유일한 구원이라 근데 화장연+영어2가...
-
다녀보신분없나요? 전 남자가 좀 더 많은걸 선호하긴하는데 여초도 좋은게 있나용
-
옯비에서만 ㅇㅈㄹ하는거지 현생,공부조언들으러온 친구들한텐 화1강요 안해요. ㅋㅋ...
-
명인학원 0
명인학원도 1ㄷ1로 관리해주는 담당선생님이랑 자습실 배치되어 있나요? 청솔이랑...
-
친구 스토리에서 보고 흠칫했네 ㅋㅋㅋ
-
가즈아
-
롤 좀 할까 6
요즘 mlb게임에 꽂혀서 이것만 하믄중...
-
맛 좋은 광대가 꼭 한둘은 있었는데 이제 없음
-
이걸로 대화 끝이라는게 슬프네
-
화1이 진짜 11
최저용으론 괜찮다니까 잡숴봐
-
요루시카 - 춤추자 아도 - 밤의 피에로 요네즈 켄시 - Nighthawks...
-
23, 24, 25다 99인데 심지어 25는 간발의 차로 99 방어한 수준이고
-
치대 목표로 반수해보려하는데(9모 성적이 지방치대) 이번 수능때 백분위 대략...
-
Ex)나
-
오늘의 바보 모먼트 10
코노 마지막곡 망쳐서 취소를 눌러버렸어요 그래서 뒤에 점수 못찍음요... 아니...
-
빨간약 평생 안먹을 자신있으니까 새 삶을 줘
-
아직 모을만한 평가원점수가 몇개없어...
-
화장연들 신기한점 12
그 만백으로 다들 대학잘감 과목이 고이기도 했는데 거기서도 고능아뿐임 ㅋㅋㅋ
-
여자 남자 판별법 22
댓글 개수 댓글 달리는 속도
-
일단 나부터 ㅋㅋ
-
teemu.com/event
-
공통기준 4종류 정도 풀면되나?
-
.
-
무슨 메타임? 19
자랑메타임? 나도 참전해봄. 중딩 전교 260등 -> 고딩 전교 13등. 현역...
-
브레턴우즈 점유소유 키트 헤겔 가능세계 예약 콰인포퍼 a는 대체 뭘 다루는거지...
-
아주 좋은 것임 근데 수능엔 인강이 잘 활성화 되어잇음 개꿀임 그냥
-
정병호 선생님 프로메테우스 괜찮나요? 다른 선생님 인강 추천도 좋습니다. 장점과...
-
100 99 1 99 100일거임 아마…? 수학이 발목을 잡았던 케이스. 마지막...
-
과학탐구 4
과학탐구:생1지1 병신 수용소:물1화1
-
2309가 마지막 만백 100아님?
-
올수는화1만 응시할게
-
막 너무 충격적인 것을 봐서(외상 없음) 그 관련된 이야기를 들으면 정신 나가는 거
-
...시1발 나도 이젠 모르겠다
-
실패시 이의 제기
-
다즈비 펀치! 다즈비 펀치!
-
화학을 너무 밀려써
-
진격거는 얘네가 하는 연극? 비스무리한거임 암튼 그럼
-
슬술밥먹으면 좋음 16
먹어야지
-
옛날노래가 왤캐 좋지 16
이유는 모르겠는데 그냥 좋음
-
하가 High가 아니라 아래 하로 인식돼서 커하 백분위100 이러면 에이씨...
음냐 19번 답이 4번이었던것 같은 기억이...칼럼 잘봤어용 ㅎ 교과서는 미근ㅏㅣ엔인가보네요!!
네 맞습니다! 교과서는 M 수학교과서 확률과 통계, 미적분2를 캡쳐했습니다.
이 내용은 비영리적 목적으로 쓰여졌습니다.
두유 두유!
두유그만해
아 맞다 또한, 정규분포 곡선을 좀더 설명하자면
그 밑넓이가 1이고, 좌우 대칭인 종모양의 곡선을 정규분포라 합니다.
가우스 적분에 의해 넓이가 1임을 밝힐 수 있다고 합니다.
응아
설마 그 책내용일...
약간?
0ㅇ0 확통 식이 상당히 복잡해보이네여.. 이번 칼럼도 잘 읽었어요 감사합니다!
과연 읽었는가..
읽었어요 ㅠㅅㅠ 근데 19번은 잘 모르겠다는게 함정!
일단 변곡접선 얘기를 좀 하고싶었어요.
그리고 확통식이 너무 어려우면 제껴도됨
중요한건 확통식이아니고 결론이져
직접 만든? 저 이거 무료배포 의향있으신가요 보고싶어요
확통부분은 책으로 냅니다.