[이동훈 기출] 한 평면에 포함되는 3개의 공간벡터 (공도회 심층분석)
게시글 주소: https://m.orbi.kr/00012417177
이동훈기출_개념편_한 평면에 포함되는 3개의 공간벡터에 관하여.pdf
이동훈 기출문제집 atom 책 페이지
---
공도회로 알려진 수능 실전 이론에 대한 분석입니다.
이동훈 기출문제집의 부교재(무료PDF)로 제공되는
42개의 수능 실전 이론 중에서 마지막 주제에 해당합니다.
나머지 41개의 주제들은 7월 초 ~ 8월 말에 걸쳐서
이동훈 기출문제집 atom 책 페이지를 통하여
꾸준하게 제공될 예정입니다.
( -> http://atom.ac/books/3888/ )
---
공도회를 소재로 하는 문제는
평면의 결정조건 + 각의 크기의 최대최소
로 접근하는 정형화된 풀이가 존재합니다.
(사실 모든 수능 문제의 풀이는 공식화되어 있는 것으로 봐야겠지요.
교과서에 바탕한 전형적인 풀이를 적용하면 항상 풀리게 출제되니까요.)
일차결합의 관점에서 공도회를 해석하면
벡터의 정의, 연산부터 내적까지,
전 과정을 이용할 수 밖에 없으므로, 공도벡을 통합적으로
학습할 좋은 기회가 됩니다.
(만약 벡터가 평면의 법선벡터로 주어지면 평면의 방정식까지
포함하게 됩니다.)
사실상 공식화 된 이론으로 문제를 빠르게 해결하는 것도 중요하지만,
그 이론의 증명과정에 대한 이해와 연습도
수능 학습에 반드시 필요하다고 생각합니다.
실전에서 어떤 상황이 닥쳐도 헤쳐나갈 수 있는 힘을 키워야 하니까요.
이동훈 기출문제집에 수록된 모든 공도회 관련 문항의 해설은
위의 이론에 기반하여 작성되었습니다.
공도회에 대한 해석이 타 기출문제집과의 가장 큰 차이점이고,
위의 설명을 낯설고 어렵게 생각하는 분들도
적지 않은 것으로 알고 있습니다만,
사실 위의 이론을 알아두면 벡터의 내적 전반에 대한
이해의 폭을 넓힐 수 있습니다.
제가 기출문제집의 이론편을 만드는 이유는
이동훈 기출문제집의 해설이 어떤 통일된 관점과 이론에 바탕하여
작성되었는가를 보여드리기 위함입니다.
장기간에 걸친 수능/평가원 기출 해설 작업을 통해서
축적된 생각들을 체계적으로 보여드리고 싶은 욕심도 있습니다.
올해 여름에 무료 공개되는 42개의 실전 개념은 개정 과정을 거쳐서
2019 이동훈 기출문제집에 수록될 예정입니다.
학습에 도움이 되길 바랍니다.
감사합니다~ :)
+ 참고로 42개의 주제는 다음과 같습니다.
(01) 수학2(함수) 유리함수, 무리함수와 격자점
(02) 수학2(수열) 등차등비수열의 전형적인 문제 (+등차중앙, 등비중앙)
(03) 수학2(수열) 합에서 일반항 유도하기
(04) 수학2(수열) 수학적 귀납법으로 증명하기
(05) 수학2(수열) 발견적 추론 (수를 나열한다.)
(06) 미적분1(수열의 극한) 수열의 극한과 급수의 계산
(07) 미적분1(수열의 극한) 등비급수와 중등기하
(08) 미적분1(함수의 극한과 연속) 함수의 연속에 대한 전형적인 응용문제
(09) 미적분1(함수의 극한과 연속) 사이값 정리의 활용
(10) 미적분1(다항함수의 미분법) 미분계수와 도함수의 다양한 문제들
(11) 미적분1(다항함수의 미분법) 접선의 방정식 (+최단거리)
(12) 미적분1(다항함수의 미분법) 평균값 정리의 활용
(13) 미적분1(다항함수의 미분법) 3차, 4차 함수의 그래프 (+인수정리)
(14) 미적분1(다항함수의 미분법) 미분가능성 (+절댓값)
(15) 미적분1(다항함수의 미분법) 미분법의 방정식, 부등식에의 활용 (문과)
(16) 미적분1(다항함수의 적분법) 구분구적법을 정적분으로
(17) 미적분1(다항함수의 적분법) 적분과 미분의관계, 미적분의 기본정리에 대한 전형적인 응용문제
(18) 미적분2(지수함수와 로그함수) 지수로그함수의 수학1 내적 연관
(19) 미적분2(지수함수와 로그함수) 삼각함수의 수학1 내적 연관
(20) 미적분2(삼각함수) 삼각함수, 지수로그함수의 극한과 중등기하
(21) 미적분2(미분법) 역함수의 미분법 총정리
(22) 미적분2(미분법) 사이값 정리, 평균값 정리의 활용
(23) 미적분2(미분법) 합성함수의 연속성과 미분가능성
(24) 미적분2(미분법) 접선의 방정식 (+변곡점, 점근선의 관점)
(25) 미적분2(미분법) 초월함수 그래프 (+빠르게 그리는 방법)
(26) 미적분2(미분법) 이계도함수에 대하여 (+함수의 볼록성)
(27) 미적분2(미분법) 미분법의 방정식, 부등식에의 활용 (이과)
(28) 미적분2(적분법) 치환적분법, 부분적분법의 전형적인 응용문제
(29) 확률과 통계(순열과 조합) 합의법칙, 곱의법칙 (+수형도)
(30) 확률과 통계(순열과 조합) 조합, 중복조합, 순열, 중복순열에 대하여
(31) 확률과 통계(확률) 확률의 계산 (+밴다이어그램)
(32) 확률과 통계(확률) 확률의 전형적인 응용문제 (+개념정립)
(33) 기하와 벡터(이차곡선) 이차곡선의 정의와 중등기하
(34) 기하와 벡터(이차곡선) 교과서에는 없는 이차곡선의 성질
(35) 기하와 벡터(평면벡터) 벡터의 일차결합 (+개념정립)
(36) 기하와 벡터(평면벡터) 벡터 내적의 최대최소 (+상수변수)
(37) 기하와 벡터(공간도형) 공간도형을 관찰하는 법 (단면화, 정사영, 전개도)
(38) 기하와 벡터(공간도형) 공간도형 개념정립
(39) 기하와 벡터(공간벡터) 좌표공간 개념정립
(40) 기하와 벡터(공간벡터) 공간에서의 직선, 평면, 구의 방정식 (+위치관계)
(41) 기하와 벡터(공간벡터) 두 평면이 이루는 각의 크기를 구하는 3가지의 방법
(42) 기하와 벡터(공간벡터) 한 평면에 포함되는 3개의 공간벡터에 관하여
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
급여도 왔으니 0
한번 종착역 까지 가볼까..
-
화나게 하는 천재인가..
-
ㅈㄱㄴ
-
틀딱이라그런가
-
일부러 상처주고 회복시켜주면 오래감 ,,,,ㅇ ㅇ... .. 그래서 자기들이 나랑...
-
사놓고 안입어서.. 코트 입으면 좀 부담인가요 걍 후드입고갈까
-
공통수학 2 유리함수 무리함수 개념이 없는데 개념 듣고 그 단원만 쎈 풀면 이틀만에...
-
반수를하게됏는데ㅠ 원래 화작이었거든요 이번 수능은 화작1개 틀렷고 화작에서 시간을...
-
눈 내리는거보니까 눈이 아프다
-
언미화지 백분위 85 93 1 76 94인데 가능할까요
-
버스 막차가 늦게까지있네
-
.. 2
-
독서만 듣고싶은데 엄청 어렵대서.. 들어보고싶은데 ㅠ
-
06년생 여자고 이번수능 언매 원점수 100이고 내신, 모의고사 쭉 1등급이었어요...
-
제발…
-
작성자 본인 이야기가 아님을 밝힙니다. 댓글로 ㄱㅁ 치지 마시고 좋아요를...
-
전 40개임뇨
-
.
-
수능 D-3에 출범하는 여의정 협의체…25학년도 의대증원분 바뀔까 출처 :...
-
아무리 그래도 2
1시간 전에 알바 호출은..
-
다 두들겨 패고 싶음
-
20번 같이 k값구하는게아니라 식조작하는거 나도 처음에 이게 k구하라는거는 아니고...
-
고전시가 공부법 0
현재 고전시가 인강 듣고있는데 1.인강 선생님 해석 들으면서 모르는 어휘 정리...
-
외대의 겨울 1
눈
-
이미 사과탐 유불리 나오니까 예견된 참사 어쩌고 하는 글이 인기글 가는데 수능전에...
-
동물 싸우는거 ㄹㅇ ㅋㅋ
-
기숙학원 추천 (죽는사람 살린다 생각하고 도와주십쇼...) 28
안녕하세요 78등급 나오던 중학교도 못하던 노베가 잇올스파ss 에서 독학하니...
-
내년에 전북의나 전남의중 하나갈거같은데 예1에 경력없으면 과외비얼마받을라나 수학...
-
대체 생윤이 어케냈길래 1컷 41이나옴? 그거 다외우면 1-2개로 방어할수...
-
정도면 많이 올린건가유 화학이 트롤해서 평백이 94밖에 안됨…
-
우우 중성붕이야 2
사랑해
-
참치캔은 못참지
-
우우남붕아 8
사랑해
-
이성인데 갑자기 복도에서 눈마주치니까 5252. 나 너 초5때 같은반인거 기억난다...
-
초반기 후반기 ㅋㅋㅋㅋㅋ 휴학반수 아니고 독서실 독재입니다... 수능은 마라톤이라는...
-
눈 오는데 0
공부해야되는 내 인생이 슬프다
-
일어낫음뇨 8
흐에
-
본인계획 0
1년간 ㅈ뺑이 쳐서 자금 모으기 나머지 1년동안 2027학년도 수능 준비
-
[고려대 25학번 오픈채팅방] 합격자를 위한 고려대 클루x노크 오픈채팅방을 소개합니다. 0
고려대 25학번 합격자를 위한 고려대 클루x노크 오픈채팅방을 소개합니다. 24학번...
-
진학사 성대 3
이거 기준이 뭔가요?? 국수영 반영비 올해껀가요 아니면 작년껀가요? 그리고...
-
특색있는 계절이 진짜 예쁜 것 같아요 여름이나 겨울 같은... 자기 색이 딱...
-
1) 장경 2) 석환경 3) 유담 4) 유원 5) 설억 6) 사복 7) 이자현 8)...
-
롤 하면서 코칭해주세요!! 롤을 잘하고 싶습니다. 주챔은 누누 마이 이렐 피즈 정도입니다.
-
나갈 준비하기 귀찮다
-
군인이랑 재수생이랑 연애하는거 괜찮을까요 쌩재수는 아니고 일학년 다니다가 휴학하는데...
-
생기는 것 같음
-
민족고대 청년사대 실천국교 저쩌구
-
재미 GOAT를 물으면 특정 과목 무서운 O스퍼거분들 몰려오는 모습이 그려져서.....
오래 기다리신 만큼 완성도 높은 원고로 보답하겠습니다. 감사합니다~ ^^
기출문제집 매우 잘 보고있습니다
이 책들을 산 후로 비로소 수학공부를 제대로 하고 있다는 느낌을 받았어요
감사합니다. 공부하시면서 의문이 드는 점이 있다면 언제든지 문의하여주세요. 더 좋은 책을 만들기 위하여 노력하겠습니다. ^^~
문제집 잘 쓰고 있어요. 좋은 자료들 감사합니다
더 좋은 책을 만들기 위하여 노력하겠습니다.
내용 너무 좋습니다^^