밑에 합성함수 문제요.
게시글 주소: https://m.orbi.kr/0001683534
lim_{t-> 20-a} f(t) = f(b)
여기서 x^3 + 3x^2 - a = g(x) 라 하면 이 함수는 연속이니
g(20-a) = f(b) 라는 식까지가 나오죠
여기서 f(b)를 g(x)로 표현해 주어야 clockwise 님이 쓰신 풀이를 적용할 수가 있는데요.
f(x)가 항상 g(x)와 같은 것이 아니기 때문에 경우를 다음과 같이 나누어야 하죠.
여기서 일이 복잡해집니다.
왜 나누어야 하는지를 간단하게 설명한다면, 두 경우에 해집합의 양상이 전혀 다르게 나타나니까 그렇습니다.
1) 모든 가능한 b값의 집합에 2를 포함하지 않는 a에 대하여
이 경우에는 clockwise 님이 쓰신 것을 그대로 활용해도 되겠네요.
f(b)=g(b) 라고 말할 수 있으므로 g(20-a) = g(b) 에서 b를 만족하는 값이 2개 이상이면 됩니다.
2) 가능한 b값의 집합이 2를 포함하는 a값에 대하여.
가능한 b값들 중 하나를 2로 가지는 a값들은 다음 식을 만족하는 모든 a값입니다.
g(20-a)=2
그 값이 실수라면 1개 혹은 2개, 그도 아니면 3개가 존재하겠죠.
여기서는 대충 치환해서 보니 3개가 존재하는 것 같네요. 그것을 a1, a2, a3이라고 하겠습니다.
a1의 경우에 대해 조건을 만족하는 b값이 몇개나 존재하는지를 살펴본다면
i) g(20-a1)=f(b) 에서, 일단 앞의 전제에 따라 b=2인 경우가 가능합니다.
ii) 그리고, b가 2가 아닌 경우를 살펴본다면 g(20-a1) = g(b) 를 만족하는 b값이 있겠죠.
해당 식을 만족하는 b값은 세 개 존재합니다.
20-a1, 20-a2, 20-a3 이렇게요.
따라서 이 때의 a1이 만들어내는, 조건을 만족시키는 b의 집합의 원소는 2개 이상입니다.
a1이 자연수이기만 하다면 해답 중 하나가 됩니다.
문제는 함수가 다른 형태로 잡혔을 때, 2번의 해답이 1번에 포함되지 않는 경우가 분명히 존재한다는 겁니다.
아래와 같은 예지요.
g(20-a)=2 의 근이 단 한 개밖에 나오지 않는 경우를 가정한다면
이 때의 a값을 a1이라고 합시다. 이 a1값은 i)과 같은 방법으로 구한 범위 안에 포함되지 않습니다.
하지만 g(20-a)=f(b) 에서 a=a1일 때 이 식을 만족하는 b값은 2개가 될 수 있습니다(하나일 수도 있습니다)
일단 b=2 로 f(b)=2 가 나오는 경우가 있을 것이고
b가 2가 아닐 때 g(20-a)=g(b) 에서 g(b)=2 가 나오는 b가 하나 있을 것입니다. 이 때 b=20-a가 됩니다.
a1이 18이 되지 않는 한 b값은 두 개가 존재하게 됩니다. 따라서 조건에 부합하죠.
여기서 주어진 함수는 분명 아래의 경우를 고민할 필요가 없지만
그 고민할 필요가 없다는 사실도 확인을 해야만 합니다. 그 경우까지 고려해야 완벽한 해답이 나오는 것이
보다 더 일반적인 경우니까요. 요는 모든 경우에서 이 경우는 특별히 2번을 고려할 필요가 없는 형태 중 하나라는 거죠.
b=2인 경우와 b가 2가 아닌 경우는 결과에 영향을 주든 안 주 든 이 문제를 풀 때 필연적으로
고민해야만 하는 부분이구요.
결론적으로 이 문제를 풀기 위해서는 b=2를 해집합으로 포함하는 경우의 a값들이 i) 에서 구한 것 안에
포함되는지 안 되는지를 구분해야 한다고 생각하는데요.
그러기 위해서 아래쪽과 같은 방법이 가능합니다.
첫번째로는 g(20-a)=2 를 만족하는 a값이 자연수가 아님을 보이거나
두 번째로는 g(20-a)=2 의 근이 하나가 아니라는 것을 보여야 합니다.
둘 중 하나라도 만족이 되면 답을 구하기 위해 복잡하게 생각하지 않고
clockwise 님의 풀이대로 바로 접근할 수 있네요.
하지만 여기서 테크닉 없이 둘 중의 하나라도 계산을 하려면 20-a의 3승을 포함한 복잡한 방정식을 정리한 후에
그 방정식의 실근이 대략적으로 어떻게 되는지를 보아야 합니다.
(실제로는 20-a를 t로 치환한 후에 방정식을 정리하고 남은 a를 20-t로 다시 바꾸어 놓으면
t가 정수값이 아니고 근이 3개이기 떄문에, a도 정수값이 아니고 근이 3개가 되기는 합니다.)
제대로 극한의 연속에 대해 공부했다면 정확하게 아 이런 부분이 문제다라고 금새 짚어낼 수는 없어도
분명히 문제가 있는 부분이 존재할 수밖에 없다는 걸 어렴풋이 느끼실 것 같은데요
제가 잘못 생각하고 있는 부분이 있는건지도 모르겠네요.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
단속기간이라
-
공부가 재밌음. 수능 공부든 대학 공부든, 각각 다른 재미가 있음. 수능 공부는...
-
예비고1인데 작수 2뜸 국어에 시간 쓸 바엔 수학에 투자하는게 맞는 것 같은데...
-
물빨하지 말자 씨발년놈들아
-
아빠가 마트에서 세계 맥주 랭킹 순으로 사와서 마심 다 마신 건 아니고 몇 모금씩...
-
화생으로 수능으로 봐도 됨? 유전이랑 중화반응에서 먹음
-
www.instagram.com/ijeoxen56/
-
이감 파이널 모의고사 10회분 5만원에 팔아요 시즌5 4회차,시즌6 6회차입니다...
-
다메다메 다메요 3
이거 벌써 4년 됨 ㅋㅋㅋㅋ
-
다메다메
-
없어서 강기본 듣고나서 김승리 풀커리 탈려고 하는데요....ㅜㅜ
-
올해도 민지와 랄선생님과 함께 크리스마스를 보낼 테니 솔크는 아니겠지요
-
여기 2명 뽑는데 막판에 18명 더 들어옴 ㅅㅂ ㅋㅋㅋㅋㅋ
-
ㅈㅂ
-
언매공부개열심히했는데 엉엉
-
전에 그림그릴때도 학원에서 1등을 못해봤고 가장 잘하는 과목도 1컷이 한계고 롤도...
-
솔직히상황만되면 0
한번더하고싶은데 그럴여건이아닌게슬프다 그래도좀늘었는디
-
45444 노베재수생이에욤. 서울런 찬스로 3사패스 다 보유중 1.국어 (고민중)...
-
흐흐
-
화작 93백분위 93뜨고 미적 92 백97뜨면 진짜 좆될듯….
-
모두가행복
-
홍대만 기다리고있는데 언제쯤 결과가 나올지.....
-
집에서 니가 수능을 보던 말던 별 상관없고 놀라워하지도 않는다.. 니가 살았는지도 모른다..
-
기하 만표 143 이면
-
수학한문제가계속아른거리네 29번은예상범위에없었어틀릴줄몰랐다고....
-
와 상상도못했다
-
이미지 써드림 9
ㄱㄱ
-
올해의 밈 1
5월부터 지금까지 계속되는 이 드립 "정상화"
-
역겨운 인간들이 너무 많아서 정리하고싶음
-
환급형이 안 된다는건가? 가격이 더 오른다는건가? 아시는 분 있으면 알려주세요!
-
휴르비 전 무물 1
고고
-
왜계속떨어짐 ?
-
전 내일 여자친구랑 놀기로 했는 데 여자친구가 아직 없다네요~
-
라인 같은 걸 몰라서 궁금해요 어느정도일까 대체..
-
물어보는게 이상한건아는데ㅠ 수학 96 100맞으면 높2까진 커버되려나
-
어떻게 지방의 확률이 인설약보다 높게 나오지.. 진학사는 죄다 1~3칸이긴 함ㅋㅋ ㅜ
-
집에 가려면 야간에 고속도로를 타야해요
-
수면시간 0
다들 몇시간 자시나요? 수시 챙기는 고등학생인데 몇 시간이 적절한지 고민입니다. 늘...
-
예전에 공무원 시험 준비하는 만화 보면서 한심했는데 0
내가 공무원 시험 준비하는 만화 주인공처럼 되는 느낌이라 ㅈ된거 같음
-
맞팔구 1
https://orbi.kr/00070001071/%EB%B2%84%EA%B1%B0%...
-
맞팔 할 사람도 구함다..!!
-
ㄱㅊ?
-
시립대 고속 0
지금 적정이면 나중에 떨어지더라도 추합 안정권에는 있을수있는건가용
-
술 맛없지않음? 8
왤케퍼마심뇨
-
고대보내주세요 3
안깝칠게요 아무과나
-
화미생지 85 94 4 89 87 경희대 국캠 될까요? 중앙대 가고싶긴 한데..
-
노란통닭 주문했어요 12
집가서치맥을즐겨볼거에요 너무좋아요
-
에피는 앵간하면 잘 가긴하던데
-
요즘 일기 쓰는데 일기 넘 좋은 것 같아요
첫번째 댓글의 주인공이 되어보세요.