밑에 합성함수 문제요.
게시글 주소: https://m.orbi.kr/0001683534
lim_{t-> 20-a} f(t) = f(b)
여기서 x^3 + 3x^2 - a = g(x) 라 하면 이 함수는 연속이니
g(20-a) = f(b) 라는 식까지가 나오죠
여기서 f(b)를 g(x)로 표현해 주어야 clockwise 님이 쓰신 풀이를 적용할 수가 있는데요.
f(x)가 항상 g(x)와 같은 것이 아니기 때문에 경우를 다음과 같이 나누어야 하죠.
여기서 일이 복잡해집니다.
왜 나누어야 하는지를 간단하게 설명한다면, 두 경우에 해집합의 양상이 전혀 다르게 나타나니까 그렇습니다.
1) 모든 가능한 b값의 집합에 2를 포함하지 않는 a에 대하여
이 경우에는 clockwise 님이 쓰신 것을 그대로 활용해도 되겠네요.
f(b)=g(b) 라고 말할 수 있으므로 g(20-a) = g(b) 에서 b를 만족하는 값이 2개 이상이면 됩니다.
2) 가능한 b값의 집합이 2를 포함하는 a값에 대하여.
가능한 b값들 중 하나를 2로 가지는 a값들은 다음 식을 만족하는 모든 a값입니다.
g(20-a)=2
그 값이 실수라면 1개 혹은 2개, 그도 아니면 3개가 존재하겠죠.
여기서는 대충 치환해서 보니 3개가 존재하는 것 같네요. 그것을 a1, a2, a3이라고 하겠습니다.
a1의 경우에 대해 조건을 만족하는 b값이 몇개나 존재하는지를 살펴본다면
i) g(20-a1)=f(b) 에서, 일단 앞의 전제에 따라 b=2인 경우가 가능합니다.
ii) 그리고, b가 2가 아닌 경우를 살펴본다면 g(20-a1) = g(b) 를 만족하는 b값이 있겠죠.
해당 식을 만족하는 b값은 세 개 존재합니다.
20-a1, 20-a2, 20-a3 이렇게요.
따라서 이 때의 a1이 만들어내는, 조건을 만족시키는 b의 집합의 원소는 2개 이상입니다.
a1이 자연수이기만 하다면 해답 중 하나가 됩니다.
문제는 함수가 다른 형태로 잡혔을 때, 2번의 해답이 1번에 포함되지 않는 경우가 분명히 존재한다는 겁니다.
아래와 같은 예지요.
g(20-a)=2 의 근이 단 한 개밖에 나오지 않는 경우를 가정한다면
이 때의 a값을 a1이라고 합시다. 이 a1값은 i)과 같은 방법으로 구한 범위 안에 포함되지 않습니다.
하지만 g(20-a)=f(b) 에서 a=a1일 때 이 식을 만족하는 b값은 2개가 될 수 있습니다(하나일 수도 있습니다)
일단 b=2 로 f(b)=2 가 나오는 경우가 있을 것이고
b가 2가 아닐 때 g(20-a)=g(b) 에서 g(b)=2 가 나오는 b가 하나 있을 것입니다. 이 때 b=20-a가 됩니다.
a1이 18이 되지 않는 한 b값은 두 개가 존재하게 됩니다. 따라서 조건에 부합하죠.
여기서 주어진 함수는 분명 아래의 경우를 고민할 필요가 없지만
그 고민할 필요가 없다는 사실도 확인을 해야만 합니다. 그 경우까지 고려해야 완벽한 해답이 나오는 것이
보다 더 일반적인 경우니까요. 요는 모든 경우에서 이 경우는 특별히 2번을 고려할 필요가 없는 형태 중 하나라는 거죠.
b=2인 경우와 b가 2가 아닌 경우는 결과에 영향을 주든 안 주 든 이 문제를 풀 때 필연적으로
고민해야만 하는 부분이구요.
결론적으로 이 문제를 풀기 위해서는 b=2를 해집합으로 포함하는 경우의 a값들이 i) 에서 구한 것 안에
포함되는지 안 되는지를 구분해야 한다고 생각하는데요.
그러기 위해서 아래쪽과 같은 방법이 가능합니다.
첫번째로는 g(20-a)=2 를 만족하는 a값이 자연수가 아님을 보이거나
두 번째로는 g(20-a)=2 의 근이 하나가 아니라는 것을 보여야 합니다.
둘 중 하나라도 만족이 되면 답을 구하기 위해 복잡하게 생각하지 않고
clockwise 님의 풀이대로 바로 접근할 수 있네요.
하지만 여기서 테크닉 없이 둘 중의 하나라도 계산을 하려면 20-a의 3승을 포함한 복잡한 방정식을 정리한 후에
그 방정식의 실근이 대략적으로 어떻게 되는지를 보아야 합니다.
(실제로는 20-a를 t로 치환한 후에 방정식을 정리하고 남은 a를 20-t로 다시 바꾸어 놓으면
t가 정수값이 아니고 근이 3개이기 떄문에, a도 정수값이 아니고 근이 3개가 되기는 합니다.)
제대로 극한의 연속에 대해 공부했다면 정확하게 아 이런 부분이 문제다라고 금새 짚어낼 수는 없어도
분명히 문제가 있는 부분이 존재할 수밖에 없다는 걸 어렴풋이 느끼실 것 같은데요
제가 잘못 생각하고 있는 부분이 있는건지도 모르겠네요.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
도대체 어떻게 공부해야 하는지 종잡을 수가 없는 과목 본인도 그래서 정법으로 런침 ㅎ
-
사탐 실모 1
정법 사문 응시하는데 실모는 아직 적생모 1회분밖에 못 풀었는데 지금이라도 적생모랑...
-
내가 나형 공대(현 확통 공대)까지는 백번 양보해서 좀 이해를 해보겠는데 사탐...
-
하입보이 가사 생각해보니까 갑자기 좀 그렇네.... 수능때까지 참아야겠다
-
뭐지 진짜 0
갑자기 왜케춥냐
-
물흐르듯 풀어서 느낌 좋았는데 너무 어려워서 ㅈ됐다고 생각하고 풀었을 때랑 오답률이...
-
문과 존경스러움 10
확통이나 사탐 하는거보면 진짜 토나오는데 어케 읽고 푸는거지
-
상상 5-9 0
인문 시간 부족으로 13~16번 3으로 밀었는데 1개도 없네..
-
헬스장 0
걍 체력이나기르자
-
과거시제 선어말어미 ‘-었-’은 이형태가 존재하지 않는다고 한다… ‘-았-’은...
-
뭐지
-
나올수도있긴하다고 생각하지만 ㄱㄴㄷ 따로안품 풀어도 ㄱㄴㄷ가 더 잘맞고 그러진않는듷...
-
통합취지를 살리려면 선택과목을 없애야한다고 생각해요.... 2
본인 받은 점수로 정직하게 대학가야지 어떤 과목은 유리하고, 어떤 과목은 불리하고,...
-
30번 하나남았는데 어캐하는지 모르겟넹
-
둘러싸인 부분이 두 개구나 ㅋㅋㅋ
-
그중 2번을 올해 훈련소에서 가봄
-
07 전화
-
2026 모집요강 쭉 보니 안되는 학교가 더 적은거 같고 대부분이 3~5퍼 과탐가산이거나 가산 없음
-
불행한 인생인듯.. ...
-
성지순례용 글 8
22수능: 불국어 평수학 불영어 불과탐 23수능: 물국어 약불수학 평영어 불과탐...
-
임정환도 터진 적 있음?
-
진짜 ㅆㅂ 매체풀다 집어던질뻔했네 매체 4틀은 ㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ
-
이거 행운임 뭐임??????
-
수능날 고정 백분위 96 시켜주면 함?
-
감기걸림
-
수능 센빠이들 오늘의 운세 말대로 조언좀 부탁합니더
-
☆대성 19패스 phil0413 추천해주시면 감사하겠습니다. 서로 1만원권 받게요^-^ 1
추천 아이디 입력하면 메가커피 1만원권 같이 받을 수 있대요 !! 대성패스와 함께...
-
생지 하는 중인디 사탐런 해야하나 고민중 지금까지 해온게 너무 아깝긴 하지만…...
-
이거 사설틱한거 같은데 평가원에서 나오면 틀렸다고 판정해도 되죠? 지문에서도 장원...
-
나오면 이해 1도 안 되고 뭐 받음각이 어쩌고 제자리에서 회전 이런 거 뇌가...
-
수능날은 2
추워야 제맛이라고 생각해요...
-
내일의 운세 2
클났다
-
10초짜리 다큐 한 편 뚝딱
-
다음주에 논술인게 안믿김;;
-
문학 8틀해서 79 나옴 흑흑 과학 예술 경제 나왔는데 과학도 좋아하는 화학지문...
-
사주믿는사람? 5
운세같은건 크게 안믿는데 사주오행은 조금 참고하는 편 오늘 물어봤는데 푸른색이 좋다...
-
22.23 수능 0
사문.정법.경제 항상 2.3등급. -> 27수능 대비로 쌍지로 트는거 ㄱㅊ? 목표는...
-
감기걸렸는데 2
수능 D-9에서 감기가 심하게 걸러벼렸는데 약먹고쉬는게나을까요 아니면 그래도 좀...
-
ㅈㄴ 아무 이유 없이 웃김ㅋㅋㅋ
-
문과고 탐구를 사문이랑 생윤or세지 선택할건데 메가패스랑 19패스 중에 뭘 사는 게...
-
ㅠㅠ 또 나만 어렵지..
-
마음먹다는 두자리 서술어 맞나요?
-
마이 퓨처 6
-
- 강은교, 자전 1 이래서 내가 살이 쪘을때 티가나는거였군
-
매년 강사 오개념 논란 평가원 교육청 모의고사 문제 논란 암기량 꽤나 있음(사상...
-
가고싶은 대학&학과는? 16
댓에 적어주세염 일단 나브터 동국대 경행
-
난이도인 국어실모 추천 부탁드려욥
-
머가 더 쉬운거같으세요
-
우하하
첫번째 댓글의 주인공이 되어보세요.