[박재우] 안녕하세요 ^^
게시글 주소: https://m.orbi.kr/00018181607
오르비 회원 여러분 오랜만입니다.
오르비 클래스 수학강사 박재웁니다.
더위가 가고 기분이 좋아질 것 같은데 곧 9월이네요.
수험생들은 시험이 현실로 느껴지기 시작하는 달입니다.
머 9평이 있어서가 아니구요. 그건 그냥 실전 연습이라고 생각하세요.
원서를 쓰게 되는 달이죠.
이게 말입니다. 원서를 쓰게 되면 기분이 묘해지고 바빠지게 됩니다.
이 것이 모든 컨디션이나 일정이 잘 관리되다가 흔들리게 되는 시발점이 되기도 합니다.
언제나 꾸준히 변함없이 앞만보고 가시기 바랍니다.
하고자 하는 사람은 못 할게 없다는 거 잘 아시죠 ?
저도 개인적으로 먼가를 이루기 위해 많은 준비를 하고 있습니다.
에너지도 많이 되찾고
꽤나 희망적입니다. 저 개인적으로는요 ㅎㅎ
오늘은 미루어 놓았던 칼럼을 하나 쓸려고 합니다.
공부하다가 지친 머리를 식혀 보시기 바랍니다.
물론 더 뜨거워지는 분들도 있겠지만요. ㅋ
저번 칼럼 처럼 이미지도 부가해서 쓰겠습니다.
수학이나 물리같은 과목들은 어떠한 공식이 있을 때 그 구조를 유심히 들여다 보는
습관이 매우 중요합니다.
대부분의 학생들은 미적분으로부터 왔다고들 얘기할 겁니다.
아닌가요 ? ㅋㅋ
그렇다면 미적분 이전까지의 사람들은 어떻게 이 공식을 얻어냈을까요 ?
특별히 천년전의 초기 그리스나 이집트 기하학자들은 어떻게 ?
수학자들의 역사들을 보다보면 재미있고 유용한 발견들을 볼 수 있습니다.
이제 이 공식을 얻게 되는 한가지 방법을 소개할 까 합니다.
비록 이 방법이 처음이라고는 볼 수는 없겠지만 다른 여타 흥미로운 것들 못지않게
좋은 방법이라고 생각합니다.
먼저 원리하나 소개할께요.
* Cavalieri의 원리 *
같은 높이를 갖고 각 높이에서 단면적이 같은 두 물체의 부피는 같다.
이 원리를 이해하기 위해서 매우 큰 두 입체 (피라미드 같은)를 생각해 보시기 바랍니다.
각 높이에 대해 들어가 있는 가로세로높이 모두 1짜리인 벽돌들을 생각해보시면
모양이 서로 다르더라도 같은 개수가 사용되어 졌다고 할 때 전체 부피는 당연히 같겠죠 ?
당연 빈 공간이 없이 채워진 상태겠지요.
이제 구의 부피를 얻기 위해 이 원리를 적용해 보겠습니다.
먼저 두개의 입체를 생각해 볼텐데요
반지름이 r인 구 S와 높이가 2r이고 밑면의 반지름이 r인 직원기둥에서
위 아래 두 개의 대칭 원뿔을
뺀 도형 두 개를 생각해볼께요
그림이 엉망이지만 그려서 한 번 보겠습니다.
여기에 이제 카발리에리의 원리를 적용해 보겠습니다.
같은 높이에서의 단면적이 같고 동일한 높이를 갖는 입체이므로
두 입체의 부피는 같습니다.
오른쪽 도형의 부피는 직원기둥에서 두 원뿔의 부피를 뺀 것이므로
그래서 구의 부피가 저렇게 나온다는 것을 알 수 있습니다.
모양과는 무관하게 각자 생각을 독창적으로 할 수 있다는 게 중요합니다.
이해가 좀 되셨는 지요.
그런데 사실 이 원리는 이러한 특수한 형태의 입체의 부피를 구하는 것 뿐만아니라
평면 상의 특정한 영역의 면적을 구하는 데도 사용되어질 수 있답니다.
단면적이 A이고 높이가 1인 기둥의 부피는 A 그러니까 단면적과 같습니다.
물리에서 이런 경우를 많이 적용하는 것을 아는 분들도 많이 계실겁니다.
암튼 이런 방법을 이용하여 면적을 한 번 구해보겠습니다.
물론 미적분을 알고 있다면 쉽게 얻을 수 있겠죠.
미적분 없이 설명은 그럼 어떻게 할 수 있을까요
오른쪽 그림의 꼭지점 표현이 원점에 있는 것 처럼 오해의 여지가 있어서
아래쪽에 다시 그려 놓았습니다.
이해 되셨나요 ?
왼쪽과 오른쪽은 두 입체의 동일 높이에 해당하는 x축의 좌표에서
동일한 단면적을 갖습니다.
피라미드가 되는 것은 x좌표와 y 좌표가 (c, c/2) 로 바뀌어서
직선이 되는 것은 아실겁니다.
그래서 두 입체의 부피는 같고 오른 쪽의 피라미드의 부피랑 비교하면
이때 왼쪽 입체의 밑면적을 xy평면으로 다시 생각한겁니다.
도형의 모양과는 관계없이 생각해 낼 수 있다는 것, 그러니까 쉬운걸로 바꿀 수 있다는
것이 강점입니다.
요즘은 정사영 이면각이 잘 안나오는 추세지만
예전에 이런 문제가 나온적이 있었죠.
기억니시나요 ?
어때요 ? 적용 가능하시나요 ^^
열공하고 좋은 결과 꼭 있길 바랍니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
점공에서 내 위가 전부 허위표본이여야 가능한..
-
07인것으로 간주한다 자 07 어디있는지?
-
기상 3
안녕하세요
-
아님 그냥 개념만 사고 기시감 때릴까
-
잘가라 넌 퇴출이다
-
당장발표해!!!!
-
여러분 14
제가사랑합니다
-
난 내가 수능을 보게될줄은 상상도 못했음.. 영재고만 붙었어도
-
왜일을안하는거야
-
삼수 홍대 0
동기들이 같이 놀아주겠죠?ㅜㅜㅜ
-
오르비에서 유명하던 의대생 안유진이랑 같은학교 같은학년 나왔음 1학년땐 같은반도...
-
대체 어딧눈거야
-
오르비 접어야지 19
내년 수능만 보고.
-
라는 소문 어디서 나온거??
-
신기하다
-
뇌과학에 기반한 설명을 해주면서 그에 대한 해결책도 제시해줌
-
엄마가 필통 정리해주다가 전자담배 보고 이거 뭐냐고 해서 볼펜이라 하고 넘어갔는데...
-
여기서 양치기란 문제집 하나 잡고 맞든 틀리든 걍 오답하면서 하루종일 문제만 풀어제끼는거
-
독서실 들어갔는데 남여 둘이서 서로 목에 자국남기고 난리남
-
경제 쓰길잘했다 3
경영은인싸들의성지같은느낌
-
등촌은 12
칼국수가 ㅈㄴ 맛있음
-
열품타 빡세네 2
다들 밥 안드시나 등수 유지 하려면 굶어야하네zzz
-
오르비 어케 접음? 10
ㅈㄱㄴ 탈퇴는 조금 나중에 할 예정
-
프사를 바꿨슨 0
DPR IAN 예에~
-
전담이고 1층나가서 피는것도 안대욮?
-
수학 잘하는 법 1
알려주세요 고능하신분들
-
생각보다 대학교 3학년부턴 외모 관리 엄청 하는듯 13
경영 계열 간 애들은 외모도 경쟁력이니까 막 스킨 부스터에 레이저에 보톡스에 온갖...
-
긴 글은 정성들여 써서 올리는데, 매번 읽어주시는 분들/ 좋아요 눌러주시는 분들...
-
감기이슈 0
딱 오늘만 쉬어야지
-
올라가는 자신감 크크
-
해보신분 있다면 알려주세요. 얘가 X-3에서 접해야 하는데 계속 X-2에서 접한다고...
-
한능검 접수 완 7
-
언확정사로 총 2-3개정도 틀리면 ㄱㄴ함?
-
높은 순 정렬 시험별 제일 기억에 남는 지문 99 에이어 98 PCR 98...
-
4수이상은 14
정시의병입니다
-
과외 가서 펜슬 잃어버림 10만원대인데 ㅅ1발!
-
나는야 5
멋쟁이 토마토
-
운동갔다 옴 9
아이고 힘들다
-
스카이/서성한/중경외시/건동홍까진 학벌 자체로 의미가 있고 사회에서 유의미한 인정을...
-
국영수만.. 거난한 고딩이니까 덕ㅋㅎ로...
-
가군에 연대 국문 쓰고 나군에 한양대 데이터사이언스학부 썼는데 점공해보니까 둘 다...
-
하니 수달챌린지 2
와 하니 진짜 개귀엽다 진짜 주머니에 넣고싶다
-
돈 너무 많이 썻다 15
텅장 예정이다
-
빵터짐ㅋㅋ 다들 좋은 결과 있으시길 바랍니다.
-
방금 배송왔는데 보니까 수거하러 온다하더군요 그냥 쓰려고하는데 1ㄷ1고객센터에...
-
나 때문인가 8
만나는 친구마다 수능본다하네
-
법대 부활하면 2
문과위상 다시 올라가나요
-
2학년 복학해야 할 걸 1학년으로 재입학해야 하는 이 코미디...ㅋㅋ
-
이거는!!!! 그냥!!!! 출제자가!!!! 싸가지가 없다고!!!!!
아 국어5등급 이해안된다 ㅅㅂ...
요약좀
한줄로 요약하면
이것도 이해 안 가면 뒤지렴^^
이라고 써있어요
ㅇㄷ
닉값
아싸 내일 태풍오는데
그 지구과학하는 애들은 "태풍의 눈" 무조건알지......?
(아! 물론 생명 화학 물리 하는애들은 그냥 배우지 않아도 앎 ㅇㅇ)
거기 한번 뛰어 갔다 와볼께
진짜 거기는 바람 안부는지 확인하구 태풍의 눈 지나가고 바람에 휩쓸려 한번 뒤져봄 ㅇㅇ
보이려나 모르겠는 데 박재우선생님의 애제자 ㅊㄱ가 쉽게 설명해드릴게요
철구요?
2
안보일까바
굿굿 ^^
쌤 이루하에서 뵐때마다 인사하고싶은데 소심해서 못하겠어요ㅎㅎ 실물이 훨씬 나으신듯...?
그냥 인사해요 ^^
닉값굳굳
멋져유