수2 문제 질문이요
게시글 주소: https://m.orbi.kr/0002322043
분수방정식 2x^2+ax+b/(x+1)(x-2)=0이 근을 갖지 않도록 하는 상수 a,b에 대하여 a+b의 최댓값을 M, 최솟값을 m이라 하자. 이때, M +m의 값을 구하여라
이문제에서 해설서에는 무연근 -1, 2를 각각 중근으로 갖거나 둘을 근으로 갖는 3가지 경우로 풀었는데요. 여기에다가 2x^2+ax+b 자체가 허근을 갖는 경우도 있지 않나요? 그래서 D<0 해가지고 a,b를 x축 y축으로 변환시켜 풀라고 했더니 최솟값, 최댓값이 안나오네요 왜 허근을 생각 안해준거죠?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
검토 하고싶네 0
그치만 실력이..
-
옆방에서 이상한 소리 들려서 당황했었음 우리까지 분위기 야릇하게 됐었어서. 그친구...
-
순결 테스트 0
https://www.arealme.com/rice-purity-test/ko/...
-
현역정시의대 0
면 과외 시급 얼마 받음?
-
어제 분명 예제도 못건드렸는데 왜 기출 4점까지 다 풀리지
-
경희 호텔경영학과랑 외대 LD 중에 어느 곳을 선택하는게 더 나을까요 참고로 반수...
-
이거 어캄 13
안빠지는데?
-
진짜 감 2
오르비 재밋어지면 쪽지 보내셈
-
너무 늙엇다 하… 반삼십이네
-
연휴라 프랜차이즈 아니면 다 문 닫았으려나 스벅은 맨날 가서 좀 참신한데로 가고싶음
-
아 ㅅㅅ 하고 싶다 10
사수하고 싶다
-
네
-
개학을 안함. 고2처럼 활동하겟음 ㅇ 그냥 색스임
-
저녁여캐투척 2
해바라기 니지카
-
응애
-
시크하네 1
매력없네
-
전한길 "스스로 희생한 尹 사랑할 수밖에…곧 지지율 60% 넘고 직무복귀할 것" 11
(서울=뉴스1) 박태훈 선임기자 = 노량진 공무원 시험계에 '역사 일타강사'로...
-
안됨
-
오랜만에 순댓국밥 먹는게 섹1스가 아니면 뭐임
-
참 정든 학교였는디
-
그리고 드릴3 드릴4 드릴5 이렇게 부르는게 연도인건가요
-
우 샤랄랄라 0
우~
-
작년에 듄탁해랑 강e분이랑 이것저것 섞어서 봤는데 올해는 ebs만 강사 한 분...
-
왜 우리팀은 외국인타자가 없을때 더 잘함? 김헌곤 저분은 왜 갑자기 잘하심? 노경은...
-
존나맛잇네
-
세종대 합격생을 위한 노크선배 꿀팁 [세종대 25][장학금정보] 0
대학커뮤니티 노크에서 선발한 세종대 선배가 오르비에 있는 예비 세종대생, 세종대...
-
데려가세요
-
내 닉네임 줄여 부르면 21
뭐임?
-
태닝하도 바프찍은 분 얘기 들어보니까 30만원?정도 들었다던데 이렇게 비싼가요 ㄷㄷ
-
서강대 합격생을 위한 꿀팁 3 [서강대 25][Tip.3] 3
대학커뮤니티 노크에서 선발한 서강대 선배가 오르비에 있는 예비 서강대생, 서대...
-
며칠전에 제가 면직할때까지 같이 일하던 동료 선생님을 뵙고왔습니다. 그 분은 20년...
-
설의훌리는 아님..
-
피곤하다... 0
탐구 찍먹 좀 더 하러 가야지
-
데미안 헤르만 헤세 명대사 인상깊은 책 구절 첫문장 1
데미안 헤르만 헤세 명대사 인상깊은 책 구절 첫문장[데미안]독일 작가 헤르만 헤세의...
-
일상생활에 심각할 정도로 지장을 줘서 한동안 그만두려고 하는데 코인이 돈 불리기...
-
통나무? ㄴㄴ 협곡을 들어버리심
-
내신 과탐 물화생 다해야해서 시간이 빠듯합니다 이번에 과탐 첨하는거라 개념부터 쭉...
-
공부 한 3~4 시간하고 쉬니까 뭐라하시면서 매일 14시간 하라고 하시는데;;
-
심심하네 0
왜 지금 일어나가지고
-
고민 있음 2
사실 군대에서 수능 말고도 공부해보고 싶은게 많긴한데 수능에 미련이 적다고 하면 또...
-
고양이 이름으로 5
샤브 어떰 샤브샤브 느낌으로다가
-
삼엘슼 현기포한 카토넥 . . . 헬조선식 급간나누기
-
지금 독서실에 저 외엔 아무도 없는데요 그래도 누군가 올 수도 있어서 함부로 못...
-
외국인 전형에 화교도 지원자격이 있는 게 다임..이걸 가지고 선동당했으면 진지하게...
-
우리집에 들어오셈
-
현역입니다 ! 현역 새끼가 어딜 안풀려하노 꼭 풀어라 꼭 vs 기출벅벅해야지 뭔...
-
수특 307페이지에 있는 지문이며, 머릿속 내용을 기반으로 분석하였기에 틀린게...
-
건동홍정도 성적이면 된다던데 한국수능전형이 있다함
-
안 씻는 사람인지를 판별할 수 잇음
그러게 말입니다. 방정식을 복소범위에서 생각하기 시작하면 고교범위에서는 상당히 골치아픈데 말이지요 -_-;;
어차피 저런 애매한 식의 서술은, 적어도 수능을 염두해두고 계신다면, 절대로 나올 리가 없으니 안심하세요.
윗분 말씀과는 다르게, 분수방정식은 복소수까지가 근의 범위에 포함됩니다.
복소수까지가 근의 범위에 포함 되기 때문에, 2x^2+ax+b=0.. 이 방정식이 허근을 가질 때도 근이 있는 겁니다.(허근도 근입니다.)
2x^2+ax+b=0 (복소수 범위에서 판단할때, 모든 이차방정식은 일반적으로 근이 두개입니다.)
그렇다면 저 방정식이 근을 갖지 않기 위해서는 무조건 무연근(-1,2)를 근으로 가질때이죠.
만약 분수방정식이 실근만 근으로 친다면 님의 말씀도 일리가 있지만, 분수방정식은 복소수범위까지 근으로 치기 때문에,
허근을 갖을 때에도 당연히 근을 갖는다고 보셔야 합니다.
음.. 그렇군요. 제가 수리나형에서 가형으로 넘어와서 개념의 차이를 느끼네요. 원래 이차방정식 자체가 근이 없다고 보면 D<0이라고 보면 되는줄 알았는데 생각해보니 이건 실근의 존재유무라고 볼수 있겠네요, 근의 존재 유무 자체는 따지는 방법이 없겠군요...
네. 모든 n차 방정식은 (복소수 범위까지 근으로 따질때) n개의 근을 갖습니다.
따라서 2차 방정식에서도 (복소수를 근의 범위라 잡을때는) 근의 유무는 따질 필요가 없어요. 무조건 근은 2개니깐요.(물론 중근도 2개의 근으로 봐야하고요.)
저도 학원 다닐 시적에 분수부등식은 실근만, 분수방정식은 모두 포함이라는 식으로 배우긴 했지만
한편으로는 제 기억 어디에서도 교과서나 수능상에서 (명시하지 않은 한) 복소수근을 언급하는 경우를 본 적이 없다고 판단하여 저렇게 답했는데
아마 제가 잘못 알고 있었나 보군요. 괜히 혼란스럽게 한 것 같아서 죄송합니다.
솔직히 수학적으로 납득은 안 가지만 (수능문제를 내는 중심이 교수들이라는 걸 생각해보면, 저도 수학과인 입장에서 저런 조건을 언급하지 않아 혼란을 주고 싶진 않을 것 같군요),
실제로 교과서나 수능에서 그렇게 방향을 잡고 있다면 그런 것일 테니까요;;;