수능에 절대 안 나올 문제(부제: 논술에도 나올 수 없음)
게시글 주소: https://m.orbi.kr/0003210160
정답률 0%에 도전해보죠. 수능에 안 나올거라고 적었지만 수능 끝나서 심심하시잖아요. 심심하시면 풀어봐요.
고등학교 과정만 써서 문제를 풀 수 있을..거에요 아마.. 제가 미리 풀어봤으니...
근데 syzy님은 풀지도..?
(이 문제는 봉사활동을 하기 위해 만들어졌습니다.)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
1등급 될까요??
-
개쫄린다 전원생존 제발
-
하는 애들은 그냥 전전 가셨으면 그냥 그런 사례들이 너무 많음 시간아깝
-
인생 존나 어렵다
-
궁금합니다
-
오늘 기말 끝났는데 할 게 없음뇨
-
아버지께서 술먹고 가정폭력한단 친구도있고 아버지 암걸리셨다는 친구도있고 엄마...
-
다음주: 여행 다다음주부터: 공부
-
컨설팅질문 2
강대다녔어서 강대 컨설팅당연히 받는데, 추가로 더 받는 것이 좋을까요..?
-
됐다. 27
-
찾아보니까 이번달도 활동하고 있었네ㅋㅋ
-
이런분 있음? 10
지인분들 친구들 등등 ”이거 너한테만 얘기하는건데~“ 이런 걸 꽤 많이 들어서 그런...
-
내가 문젠가...
-
한완수로 해볼까 4
가끔씩 인강 필요한건 동생패스 쓰고
-
오ㅗ노어모모노노노
-
생2런 1
아마 올해 약대 걸고 반수할거같은데 화1 50 생1 47인데 화1 -> 생2? or...
-
미지근한 어느 날에 나시계는 흐르고 난 그저 끌려가네문득 평범한 삶 싫증이...
-
올해는 우주 컨셉인듯
-
오르비 눈 보면 감사원이 떠오르고 감사원을 보면 오르비가 연상되는
-
하루종일 했는데 29
1등좀...
-
작년 올해 둘 다 숙대 경희 외대 인논 응시했음 숙대는 작년이나 올해나 거의...
-
수능에사도 대학와서도 계산때문에 깎이는 점수가 너무큰데.. 차근차근풀어도 차근차근실수함
-
OK COMPUTER는 명반입니다
-
상상이상으로
-
순공 몇시간 정도가 적절할까요? 목표 등급은 모고 평균 2등급입니다.
-
들어보신분있나요... ..
-
기말고사 잘봐도 A0는 힘들겟죠 수학 거의다맞고 물리 한개틀리고 씨언어...
-
입결 어디에서 형성될 것 같음?
-
심찬우 잡도해 0
예비 고3 국어 3등급 뜨는 노벤데 잡도해 부터 할까요?
-
본인 99.0 99.5 99.9까지 찍어봄 최종으로는 중학교 전교 2등
-
누누 정글합니다 골드3이고 누누 27게임 승률74퍼 평점 6.26:1 찍혀요...
-
저 재수해요 삼수해요 사수해요.. 이러면 좀 에???!!??!! n수???!!!!!...
-
질문받아요 33
선넘질받도오케이
-
거래파토 존나내네
-
인강민철 0
정석민 독서 문학 커리 탈건데 아직 할게 없음 2025대비 인강민철 있는데 이거 걍...
-
나만 떨어지는 것이 아니라 어차피 떨어지면 다 같이 떨어지는 건데, 그만큼...
-
오래된 생각이다..
-
생윤 1타? 2
친구가 한다는데 누구인가요?
-
기존에 과탐만 허용한 메디컬(지금은 대부분)이 사탐도 허용으로 바꿀 거 같음?
-
??
-
ㄱㅁ 하나 인증 13
이틀 전에 릴스에 무심코 단 댓글이 좋아요 수가.. ㄷㄷㄷ 릴스는 비계로 가끔씩...
-
환산점수 내려가나요? 24랑 1컷 표점은비슷하다 하면 단순히 만표가 내려갔다고 해서...
-
ㄱㄱㄱㄱㄱㄱㄱㄱ
-
GTO / 디지몬 어드벤처 - 프론티어 우에키의 법칙 이거 안 본 애들하곤 얘기 안함
-
옯비 이즈 프리!!
-
만지금 15개정발점 스1다듣고 수2듣는데 만약 뉴런나왔을때 공통1번에서19번까지...
-
ㄹㅇ
inx를 X로 치환합니다 찍고 갑니다
전 이 문제 풀 때 치환한 적이 없어서...ㅠ
ㅎㅎ 그런가요 괄호가 -1로 묶여있어서 왠지 치환해야 할것 같아서
-1은 역수표시에요
제 이름이 나왔으니 풀어야겠네요..ㅎ 직관적으로는 x가 무한대로 가면 거의 x/2ln x -2x/(ln x)^2 = (x ln x -4x) 2(ln x)^2 이니까 무한대로 발산해서 그런거 아닐까요. x무한대로가면 마지막식 분자는 x보다 크고 분모는 로그니까 상대가 안되서.. 혹은 그냥 해도 되지만 ln x = t 라 치환해서 정리하면
(e^t / (1+2t) - 2e^t / (1+t^2) )^-1 = (1+2t)(1+t^2)e^-t / (t^2 -4t-1) < 8t e^-t 이므로 됩니다. (단 t충분히 클 때 (1+2t)(1+t^2)<4t^3, t^2 -4t-1 > t^2 /2 이므로)
제 풀이보다는 훨씬 간략하네요! 마지막 식에 절댓값을 씌워서 샌드위치 정리를 쓰면 원하는 결론이 나오겠죠? 하지만 t/e^t의 극한값의 경우 0이라는 건 짐작할 수 있지만 직접 풀어본 학생들은 별로 없으리라 생각해요. 그래서 저는 x와 루트x를 이용해서 풀었는데 풀이는 따로 올릴게요~
t/e^t의 극한값이 0이라는 걸 직접 풀어본 학생들은 별로 없을 거라는 건 무슨 의미인가요?
e^t가 t보다 훨씬 빨리 증가하기 때문에 극한값이 0이라고 바로 생각할 수 있지만 실제로 풀이 과정을 서술할 수 있는 학생이 적다는 뜻이었습니다. ...아닌가요;;
이렇게 재밌는 문제도 올려주시고 고맙습니다ㅎ t/e^t 극한값 0인 것은, (로피탈 정리를 안 쓰더라도) t양수일 때 e^t > 1+t+ t^2 /2 을 증명해서 보이거나 ( f(t) = e^t -1-t -t^2 /2 라도 두시고, f ' , f '' 계산해서 t>0일 때 f(t)>0이다 보일 수 있으니까요), g(t) =e^t - t^2 라는 함수 둔 후에 t -> 무한대 이면 이 함수가 발산한다..(혹은 양수이다) 를 (역시 미분 이용해서) 보이면 될 것 같아요~ 또 가끔 봉사활동 해주시면 좋고요^^
못풀겟음.. 나삼순가..
- 비방죄 (Horus Code 제5조 7항)
정답률 0에 도전한다고 했지 정답률 0이라고는 안했고요, 논술에조차 나올 수 없다고 적은건 경향에 전혀 안맞기 때문이지 어려워서가 아닙니다. 제가 잘난척하려고 이글 쓴 줄 아세요?
딱봐도 잘난척하는거 보여요..ㄷㄷ
처ㅛ댓글에 치환으로 한다는 댓글 들어보지도 않고
본인이 푼방식은 그게아니라는건 전혀 논리적이지않음
걍 잘난척하랴고 올린거 ㅇㅇ
제가 언제 그 방식이 틀렸다고 했나요? 제가 푼 방법과 다르다고 한거죠. 그리고 자꾸 잘난척 하는걸로 몰아가지 마시죠.
몰아가기 참 잘하시네요.
이렇게 글의 의도를 왜곡해놓으시니 뭐라 말해야 할지 모르겠습니다.
홀든님, 글쓴이 엔공간님은 그냥 재미로 풀어보자고 그랬지,
불특정다수에게 "나 쩔지 쩔지 ㅋㅋㅋ " 라고 하신 게 아니라고 언급을 하셨습니다.
그리고 본문에 봉사활동 에 쓰려고 만든거라고 애초에 언급을 하셨잖아요.
홀든님에게서 편협성이 보이시네요.
글을 당신 머릿속에서 재구성 하시지 마시고 '있는 그대로'를 보세요.
내가 풀 수 있다, 정답률 0%다
흠?
문과라 이 문제가 얼마나 어려운지는 모르겠지만, 시간 넉넉히 잡고 여유있게 풀면 풀 수 있는 문제도 수능시험장에선 안풀어질수도 있는거 아니에요?
물론 그렇겠죠? 근데 전 '정답률이 0이다'라고 말한 적은 없었는데.. 그리고 저 문제는 당연히 시간 넉넉히 잡고 여유있게 풀면 풀 수 있는 문제고 어떤 분께서는 잠깐사이에 풀어내셨으니...
- 비방죄 (Horus Code 제5조 7항)
방금 전에 님이 "작성자가 '이 문제가 정답률 0%다'"라고 했잖아요? 말바꾸지 마세요. 그리고 '이거 이후로 댓글안담'이라는 말, 귀막는 거 맞죠? '내가 맞고 너가 틀리다'는 태도, 그렇게 겸손하다고 할 수 없을텐데요.
결국 말꼬리잡기였던 거군요.
님 말대로라면 학교 내신 객관식 시험에서 나오는 문제들은 선생님이 이미 푸셨으니 0%가 나올 수 없겠군요?
오르비 유저에 비하면 N공간님은 선생님이라는 의미인가요?
그걸 또 그렇게 해석하시는군요. 할 말이 없습니다.
오늘 신고했습니다. Horus Code 읽어보시면 알겠지만 Holden님의 행동이 인신공격죄, 비방죄, 모욕죄 중 하나에 해당한다는 사실은 부정할 수 없을 것입니다.
다들 너무 삑딱하게 바라보시는둣...? 설령 그렇게 느끼셧더라도 그냥 넘어가셔도 되실일 같은데.. 굳이 서로기분나쁠필요는없잖아요 ...
별것도 아닌거로 왜이렇게 트집을...;
lnx / x 가 무한대로 가면 0이된다.
이거만 알면 되지 않나요?? 잘못풀었나..?
극한풀이 기본 - 식간단화
분모통일. -1이므로
분자분모 위치 바꿔줌.
극한풀이 기본은 식을 변형해서 수렴부분을 도출해내고 수렴부분을 빼내버리는 식의 풀이이므로
좌변과 우변에 (lnx )^2나눠줌.
그러면 살펴보면 x와 lnx가 남게됨.
그래서 이 두개 극한이 어떻게 변하냐가 핵심 < 이라고 봤어요
루트엑스 빼기 엘엔엑스는 fx
f(4) > 0 (e>2임을 이용).
x>4에서 f'(x)는 양수.
그러므로 x>4에서 f(x)>0
고로
x>4에서 루트x>lnx
루트x /x > lnx/x > 0 성립 (단, x>4)
맨왼쪽 식 극한 0
그러므로 lnx/x도 극한 0
풀이발상근거 :
알고 있는건 다항함수 혹은 n차함수끼리 극한이므로 lnx보다 크지만 지수가 1보다 작은 x도출
=> 루트x 탄생!
이정도면 논술에 나올 수 있지 않나요?
문과라서 내용은 잘 모르겠지만 걍 아무의도없이 문제 투척한 거같은데...과민반응이 왤케 많지? 싸울일이 전혀 아닌데 ㅋㅋㅋㅋㅋ