자작문제
게시글 주소: https://m.orbi.kr/0003232910
아쉽게도 제가 답을 적어놓은 종이를 잃어버려서...풀이를 구합니다^^;
형식은 수능문제지만 수능에 나올 만한 문제는 아닙니다.(한 문제에 너무 많은 걸 물어보므로)
고등학교때 경우의 수 구하는 문제가 있었는데 그걸 약간 일반화시켜 수열화해서 만들었던 걸로 기억합니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
울반 이과 애들이 너 같은 새기가 경제학과 지망하니까 나라가 이 꼬라지다 ㅇㅈㄹ...
-
얼버기 0
졸려요
-
1. 원래 더 어려울 뻔함 2. 성규쌤 모고 1, 2회가 더 어려움(20번=일반...
-
수능장 빌런연습 1
앞 옆으로 비염이신분들이 계셔서 발런연습을 독재 자습실에서 매일하고는데 진짜 효울도...
-
아 실모 더살까 1
1일2실모마렵
-
가는 거 같냐 남들은 사탐이 그렇게 쉽다는데 나만 저능하지 정법이 자꾸 가출하더니...
-
얼버기 1
아니 어젯밤에 인증메타였음? 알림뭐여ㄷㄷㄷ
-
상큼한 아침에 저게 뭐노...
-
현역 예체능 입시 망해서 재수 공부로 틀었음.. 초등학교때부터 예중예고 나와서 평생...
-
사문 질문 2
공유성은 특정 사회 성원이 공유하는 모든 후천적 행동 양식은 문화적 동질성에...
-
정답좀 알려줘 ..
-
..
-
갓셍살아야되는데
-
교수 쏘리.
-
왜 자꾸 117나오는거지…
-
사탐 뒤늦게 시작함. 생윤: 개념 한바퀴 돌리기 지루함. 처음엔 현자의 돌보다가 쌩...
-
ㅈㄱㄴ
-
얼버잠 0
다들 잘자요
-
오케이 인정 3
시발 문제 잘내네
-
수학문제가 안풀릴때마다 너무 분해서 집중이 안됨 오늘도 문제집 찢을뻔했는데 화를...
-
1조까지 옴..
-
졸피뎀중독걸릴거같아서 심한 거 아니면 참는중인데 진짜 스트레스
-
규칙적이게 해
-
-x 넣어서 빼는 것보다는 합성함수로 인식-> 양변 극소 동일함을 이용하는 게...
-
야식시킴 1
hoe
-
현실성은 없지만 만약 이거 뜬다면 나머지 개ㅈ박아도 성불할듯…
-
생명 실모 트레일러랑 한종철 풀어보신 분 계신가요!! 0
디카프 트레일러랑 한종철 철두철미 중 하나만 추천해주신다면 어떤게 좋을까요!...
-
빵굽습니다 0
-
잠안오네 조졌다 3
커피를 너무 먹었나...
-
남은기간 .. 정법 벼락치기로 .. 뭘할까요
-
괜히 사문했나 1
차라리 동사할껄 그랬나 사문 너무 많이 함
-
오늘부터 8
도서관에서 눈치 안보고 달려야겠다 오늘 계속 나도 모르게 후방주시하게 된듯
-
시중에 푼 실모중에 제일 평가원같은듯. 문학 어려운데 답 근거가 명확하고 전반적으로 합리적인 느낌
-
개어렵네. 23분 걸려서 맞춤 역시 건너뛰길 잘했음
-
22번×12문제 0
아 오늘 참 열심히 공부한 듯 패드를 두고와서 인강도 못 듣고 양치기 바로 조지기 ㅋㅋㅋ
-
혹시 한국어가 좆망했을때를 대비
-
교육청 22번 풀면서 얻어가는 거도 많고 좋았는데 문해전시즌2도 비슷한가요??
-
이해원, 킬캠, 양승진모고, 김기현 컬렉션, 빡모 난이도 비교하면 어때요?
-
또 오랜만에 공부하네요 공부 20일도 안하고 시험 치겠네요 ㅋㅋㅋㅋㅋ 정신 못...
-
상황이해는 다 했는데 계산에서 망가짐 ㅍㅍ
-
밤새기 0
할게너무많은데.. 지금시기에 밤새는건 하는것만도 못한 행동이겠죠
-
국어 실모 ㅊㅊ 2
한 6개 파밍해야하는데 추천해주샤요 이감 파이널 12회 전회차랑 더프만 풀어봄...
-
지금 저의 제일 큰 문제가 수학이라고 생각이 드는데 전 통통이고 6모 수학...
-
예비고3이라서 가볼까하는데 고2후반부터 인강듣고 거의 혼자 했는데 독학...
-
하긴 할건데 가볍게 하고 넘어가는게맞을까요?? 올수보고 판단하면 되려나요
-
d-9 4
-
삐딱하게 살아 보려고 함 삐딱하게 살려고 마음먹으니까 괜찮아 다 괜찮아졌어
-
건대 공대가는거랑 취업에서 누가 더 유리함?
-
11덮 국어 3
풀기에 괜찮나요??? 저번주에 풀려고 했느데 저번주에 김승모 완전 망하고 또...
포함과 배제의 원리에서 a_n = 3^n - 2^n - 2^n - 2^n +1^n +1^n +1^n = 3^n - 3* 2^n +3
b_n = 3*2^n-1 (첫자리는 3가지, 그 다음자리부터는 항상 2가지 가능성)
c_n = b_n - 6 = 3*2^n-1 -6 (단, n>=2일때) (b_n에 해당하는 것들 중, 맨 앞 두 수(예를 들어 1,2라고 합시다)가 1 2 1 2 1 2 ... 이런 식으로 반복되는 유형만 제거하면 되는데, 맨 앞 두 수가 결정되는 방법의 수는 6가지이므로)
d_n 은 대충 생각해도 맨 마지막 자리가 1,2,3 중 약 1/3씩 분배될 것이라 알 수 있으므로(맨 앞자리도), d_n /c_n 의 극한은 1/3이 맞을 것입니다. 하지만 직접 d_n을 계산해봅시다. c_n 중에서 맨 앞자리=맨 뒷자리 인 것의 개수를 e_n 이라 하면,
1.. c_n = d_n +e_n (이 식은 필요는 없지만..)
2.. d_n+1 = d_n +2e_n
3.. e_n+1 = d_n
입니다. 2,3번 연립 -> d_n+1 =d_n +2d_n-1. 풀면(특성근 등등) d_n = u* 2^n + v*(-1)^n (u,v는 상수)
d_2 =0 , d_3 =6 을 이용하여 u,v를 계산하면, u=1/2 , v=-2. 따라서 d_n = 2^n-1 +2(-1)^n-1. 따라서 극한은 1/3.
풀이를 적은 종이를 잃어버려서.. 라는 멘트는 누구의 멘트와 비슷한데..ㅎㅎ
와우! 정말 잘 푸시네요. 이 문제는 사실 d_n을 구하는게 핵심인데, 이렇게도 풀 수 있겠끔 보기를 저렇게 만들었던 것 같습니다. 그래도 a_n~c_n은 굉장히 쉽게 구하셨네요ㅎ 라고 쓰는 중에 dn까지 구하셨네요! 대단하십니다ㅎ