한완수 수2상편 질문드립니다
게시글 주소: https://m.orbi.kr/0003349739
헤비사이드로 항이4개곱해진건 어떻게해야하나요
한완수 수2상편 각각 28쪽2번 34쪽입니다
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
콱)헐 개못해 4
소름돋아
-
다들 생일언제인가요?? 14
저는 1월 25일!
-
2024 년 11 월 26 일 | 제 1219 호 2025 수능 D-352 여러분의...
-
할거 없는데
-
작아서 들고다니기도 좋음
-
지금 군대에 있어서 7월에 강대K 시작할때 파이널부터 들을까 하는데 언제쯤 대기...
-
정시로 넘어오려 각을 재네요 이게 바로 현여기의 패기인가 흠......
-
진짜 막판에 2에서 4로 고침…
-
마비카 레ㅛ츠고
-
할 만할까요? 설경이 목표입니다 대학 간판에 미련이 남는 한편 수험 생활을 오래...
-
토익 2트 ㅇㅈ 21
(인증글 올리는걸 깜빡해서 뒤늦게 올려봅니다..) 당시 몸이 많이 아팠던지라 시험에...
-
의외로 나 14
10대임
-
??? 가치없음???? 메디컬 말고 갈만한 과 엊ㅅ는거임??
-
왜 자꾸 21살로 계산하게 되지
-
그게 리얼 트루?????????
-
아 머리 아파 4
-
25수능 물1 45 생1 47 셤장에서 물생 둘다 1을 확신 결과는 물리...
-
늙어서 그런가 별 감흥이 없네 이제 실전에서만 느끼는 몸이 되었나 네 사실 졸려요
-
올해 9월이랑 수능 중에서 확통 기준 뭐가 더 체감 난이도가 쉬우셨나요? 제가...
-
경제 모의고사 1
경제 기출 문제집 추천 경제 모의고사는 어떻게 구하는지 알고 싶습니다. 특히 시대...
-
국어 문학 틀린거 (8점이긴함,, 근데 ㅅㅂ 24문학도 다맞았는데 하,,) 지구...
-
레전드 똥글이 보고싶어.
-
여기서 대체 무슨 생각으로 3을 찍었을까요 진짜 시력에 문제있나 날려읽느라 과학...
-
1년 반수 비용 180으로 의대 붙으면 돈 아껴줬다고 생색내도 된다 vs 안 된다 3
sky 공대 다니다가 반수 결심, 부모님 격한 동의 + 전폭적 지원 약속 후 1년...
-
이제서야 정신을 차린 나...
-
무물보 24
-
폰보고 이런걸떠나서
-
획득비 울산의 쓰려니까 지학때문에 안되고,, 고의나 한양의 쓰려니까 화1 백분위가...
-
영어공부도 해야 할까요 영포자인데 망했네 외교 떼고 정치학과 따로 만들어주세요...
-
대학생신분으로 얼마까지 가능할지 자기 생활비만 벌어도 ㅆㅅㅌㅊ인가
-
화미정법사문 93 93 2 98 95 고속에선 성대 공학계열 한양대 중간공 연초뜨던데
-
백분위 기준 현역 52 75 2 58 70 언매 미적 영 생지 재수 79 79 3...
-
다 이쁠듯
-
아니 미국 대통령 누구 당선된지는 알고있으라고.... 이과라도 알아야돼 이것들아 제친구들 얘기임
-
햇살론 대출도 빨리 준비해야하고 물류가 체력적으로는 안 힘든데 하고 나면 발목이...
-
영어 빈칸 한입 2
생각없이 읽다보면 왜 갑자기 이런 얘기를 하지? 라는 생각이 들 수 있습니다… 좋은 문제
-
엔수생들 성적표 1
가채점이랑 비교하면 성적표 백분위같은거 보통 좀 떨어지나요?? 경험좀... 전 항상...
-
흡연 말린 버스기사에 '소변 테러'…한문철도 "이런 사건 처음" 6
시내버스에 탑승한 한 남성이 흡연을 제지하는 운전기사에게 소변을 누고 폭행하는...
-
어째 이과놈들을 후보에서 볼수가없구나
-
수학 질문 0
1년동안 수학을 1,2 받다가 수능날 낮3이 떴어요 지금 메가패스 기간이...
-
비오네 23
-
몸매좋은 33살 돈많은 아줌마vs풋풋한 돈없는 새내기 13
누구랑 사귈래 얼굴은 같음
-
올 수능부터 발표 당일날은 성적통지표 온라인으로 발급 가능 성적 증명서는 9일부터...
-
슈발 나밖에 없는데 점심시간 종치면서 들어왔다고 개 ㅈㄹ함 ㅠ 원래 이럼? 지는...
-
이제 지하철 타고 자퇴하러 가보는건가.....
-
현재 시립공대 다니고 있어요. 정시로는 시립대 경희대 라인 나왔습니다....
-
가격때문에 고민이 많이 되긴 하네요..
-
으악
1. 1 / (n(n+1)(n+2)(n+3)) = (1/3) {n+3 - 3} / (n(n+1)(n+2)(n+3)) = (1/3) { 1/(n(n+1)(n+2)) - 1/((n+1)(n+2)(n+3))} 이므로, 더하면 첫항 (1/3) (1/(1*2*3)) = 1/18 만 남고 다 상쇄. (뒷쪽 항들의 극한은 0으로 가므로 논리적 모순 없음.)
헤비사이드로 하려면 1/(n(n+1)(n+2)(n+3)) = a/n + b/(n+1) + c/(n+2) + d/(n+3) 이 n에 대한 항등식이라 두고 상수a,b,c,d구하시면 됩니다. (a,b,c,d각각 1/6 , -1/2, 1/2, -1/6)
쭉 다 더하면 1/4 , 1/5 , ... 등등은 쫙 다 상쇄되고, 1 , 1/2 , 1/3 에 적당한 계수(a,b,c,d 등) 곱한 것들만 몇 개 남아서 더해보면 됩니다.
2. 1/ (x(x+1)^3 ) = a/x + b/(x+1) + c/(x+1)^2 + d/(x+1)^3 이 x에 대한 항등식이라 두고 상수a,b,c,d,구하시면 됩니다. (양변에 x(x+1)^3 곱하고 전개..)
(a,b,c,d 구하시는 약간 더 간단할 수도(?) 있는 방식은 1/(x(x+1)^3 ) = 1/(x(x+1)^2 ) - 1/(x+1)^3 으로 분해하시고 이 중 앞 항은 다시 1/(x(x+1)^2 ) = 1/(x(x+1)) - 1/((x+1)^2 ) = 1/x - 1/(x+1) - 1/(x(x+1)^2 ) 처럼 하는 겁니다. 그러면 답은 1/x - 1/(x+1) - 1/(x+1)^2 - 1/(x+1)^3 . )
ㄴ. 이 문제는 참이 아닙니다. (동치 아님.) 편의상 알파=a, 베타=b라 둡시다.
좌 <=> 우 에서, 좌 <= 우 방향 증명은 자명. (양변에 (x-a)^2010 |x-b| 곱하면 되는데 이는 0이상인 수이므로..)
좌 => 우 방향은,
x=a,b가 아닐 때, (x-a)^2010 |x-b| (양수)로 양변 나누면 원하는 부등식 (x-a) f(x) >= 0 얻음.
x=a일 때, 좌측 우측 부등식 모두 0=0 으로 참이므로 성립.
x=b일 때, 좌측 부등식 0=0으로 성립하나, 우측 부등식은 (b-a)f(b) >=0 로 f(b)의 부호에 따라 참, 거짓 모두 가능.
주. 만약 f가 연속함수라는 조건이 있으면 참.