[수학칼럼] 닮음을 보는 눈.
게시글 주소: https://m.orbi.kr/0003659165
안녕하세요? 오르비 클래스에서 수학영역의 비밀을 강의하고 있는 박주혁t 입니다~
글이 좀 뜸했네요ㅠ.ㅜ 학원에서 특강에 뭐에.. 그리고 주말엔 촬영.. 뭐, 약간 바빴습니다^^.
그리고 4월에 수비가 아마도 완강될 것 같네요~ 그래서 후속강좌도 생각중이라서 (이건 글 말미에 소개^^)
정신이 없었습니다.
얼마전에 4월 교육청 모의고사를 보았습니다. 그리고 며칠전에 4월 사설(종로 or 메가)모의고사를 보았습니다.
항상 오프에선 이야기 합니다.
"모의고사를 보는 날은 수능처럼 쳐라. 하지만, 모의고사를 치르고 나서 그 성적은 중요하지 않다.
중요한 것은 본인이 지금 어떠한 상태인지 파악하는 것이고, 약점을 체크한 후 보완하는 것이다."
그렇습니다.
모의고사는 잘 치는 경우도 있고, 그렇지 못한 경우도 있습니다.
일희일비 하지말고, 매번 시험을 최선을 다하여 응시하되, 결과는 쿨하게 " 내 약점체크용 진단서 " 정도로
취급하시면 됩니다.
자, 오늘의 칼럼을 시작해 보지요.
좀 이과쪽으로 편향된 글이 될 수 있음을 미리 알려드립니다~ (중간까지는 공통과정이에요 ㅋ)
------------------------------------------------------
이번 4월 모의고사 무한등비급수 도형문제에 이런 문제가 나왔었습니다.
(A,B형 공통)
혹시 안 풀어보신 분들을 풀어보시고! 글을 읽어주세요~^^
이 문제 때문에 멘붕오신분들, 좌표로 푸신분들, 무게중심을 이용해서 푸신분들 많으십니다.
그리고, 이 문제를 닮음으로 푸신 분들도 많으실 거에요.
그런데, 전 가능한 닮음으로 풀라고 하고 싶네요.
시험장에서야 생각이 안 떠오르면 좌표도입으로라도 풀 수 있지만,
실제로 이 문제는 닮음을 이용하면 1-2분 컷인 문제라서요~
풀이를 볼까요?
우선, 이 구조가 눈에 들어오셔야 할 것 같네요.
그렇지 않으면 2번 계산을 해야 합니다. (2번계산 하는게 뭐 어때서? 난 시간 많이 남아~ 라면 뭐 괜찮습니다ㅋ)
그 다음에 닮음이 눈에 들어오셔야 합니다.
2:1 닯음이 들어오시죠? 그래서 스슥 하면 넓이가 1/3 이 나오네요. ㅋ
그 다음 닮음은 훈련으로 보이게 하시는게 좋습니다.
이게 잘 안보이신 다고요? B1-G1의 기울기가 1/2 이므로, 한칸 더 붙이면 딱 모서리로 떨어지는걸 알 수 있습니다.
(기울기를 주의깊게 보는것은 역시 굉장히 중요합니다.)
자, 이제 공비를 구할 차례입니다.
아까 그었던 보조선이 도움을 주네요. 금방 구했습니다^^
이것은 선천적으로 타고나는 능력이 아니라, 훈련을 통해 얻어질 수 있는 힘이라고 생각합니다. 저는.
자, 그럼 훈련해 볼까요?
우선 교육청 모의고사 문제입니다.
닮음을 이용해서 푸시고, 푸시고 나서 해설을 보세요~^^
자, 다 푸셨죠? ㅋ
그렇게 어려운 문제는 아니었습니다.
(그러나 좌표로 많이들 풀죠 ㅋ)
자. 어떻습니까? 첫째항이 정사각형의 1/6이 금방 보이니까, 사실 이것도 쉽게 풀리는 문제입니다.
어때요, 닮음을 보는 눈이 좀 길러지신것 같나요?
이번엔 수능문제로 약간 난이도를 높여 보지요.
2013학년도 문제입니다.
여기 어디에 닮음이 쓰이냐고요? ㅋㅋ 쓰입니다~
우선 풀어보신후에 아래로 스크롤 해 주세요~^^
자, 어떠십니까?
우선 이 그림에서 삼수선을 찾으셨을 테니까, 빨간선과 파란선의 길이를 구하면 cos값이 나오네요?^^
그럼 다시 그림을 펼칩니다.
이 닮음이 보이시죠? ^^
이제 저 위의 빨간색 삼각형의 길이만 알면 되네요!
자, 복잡한 계산없이 바로 나오는군요! ^^
답은 40이네요^^
어떠세요? 닮음이란 것은 중학교에서 배우는 도형의 성질이지만, 상당히 유용한 부분이 많습니다.
특히, 이과친구들이라면 수능 전에 이쪽 부분들을 좀 공부해 둔다면 기하관련 파트에서 반드시 도움을 받으실거에요~
수능 이 문제는 EBS에서 직접 연계된것 처럼 보이는 문제이지만,
샘은 이러한 이유 때문에, 교과개념의 정확한 이해와 적용을 더 중시하는 편입니다~^^
훈련으로 가능한 영역이니, 훈련하세요!!! 어려운 일이 아닙니다~^^
---------------------------------------------------------------------------------------
p.s. I
4월중에 수비 B형 촬영은 마무리 될 예정이고요, 편집작업이 끝나면 아마도 5월 첫주중에 완강이 될 것 같네요^^
p.s. II
후속강좌는 "공도벡 킬러대비 강좌" 가 될 것 같습니다.
'베르테르'님과 이미 협의를 마쳤고, 고퀄리티 문제들로 수업이 진행될 예정입니다~
많이 기대해 주세요~^^
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
ㅈㄱㄴ
-
설약 지망 08 1
갓반고 4.2에 고3 국수 모고는 1-2 왔다갔다 해서 정시로 돌린지 3개월 정도...
-
안녕하세여 예비 고3입니다.. 시대인재 수학 라이브 들으면서 과탐 엣지 플로우...
-
코딩 꿀팁 3
메모장에 코딩하면 쌉고수처럼 보일 수 있음
-
07인데 뭐 현역아닌가 빡모 88인데 3모때 1 될까요?이런거 올릴꺼임뇨
-
한약수 가능?
-
까만 건 글씨고 하얀 건 종이야
-
소름돋아
-
버튜버 콘서트 릴스마다 다 코드 뽑아버리면 어케됨 이러네 2
아 존나웃기네ㅜㅋㅋㅋㅋㅋ
-
현역들 수능 준비할 때 학교쌤이 얼마나 간섭했음? 15
학교쌤이 얼마나 간섭하는지 대충이라도 아는게 나을 것 같아서 물어봄 혹시 수행같은건...
-
어떰? 얼굴이 승무원상으로 예쁜데 목소리 중저음임
-
恋するおとめの作り方 사랑하는 여자아이를 만드는법 강력 추천드립니다 시간나시면 한번 보시길
-
음하하하 돈까스파스타바게트
-
쌍지런데 모고 2등급정도 이기상 이모다도 45이상 많음 근데 세지4등급...
-
친친은 하루에 15개씩 조지는데 본계는 1년에 3개씩 올림 멀어진 사람이 너무 많다보니 어색함뇨
-
애니 미쳤습니다 예전에 징송의 프리렌인 줄 알았다는... 다음 언제 나올련지
-
인싸들이 내가 오르비에 글 쓰는 이유 이해 못하는데 5
인싸들 스토리, DM = 오르비 글, 댓글 ….인스타는 올려봤자 뭐 몇명 보지도...
-
노상방뇨 4
상방이없단거임뇨 노상방뇨
-
평균 컷 몇 예상?
-
뇨뇨거리니까 9
배뇨마려움 그만좀 글좀 싸라 ㄹㅇ
-
올해초였나 그 때도 몇 명 썼었는데 돌고도는유행이노
-
작년보다 입결이 떨어진다는 말도 있고 올라간다는 말도 있어서 너무 후달리네요.....
-
중2때 겁나 했던 트위터에서 알게 된 트친이 고등학교때 알고 보니 한 살 후배였던...
-
블루록 저번주걸 안봤네 13
캬캬캬
-
난 잘때 판타지 캐릭터라던지 실존하지 않는 것들이면 꿈 자체를 못 꾸는데 어떻게 이게 가능한거임?
-
안녕하세요? 국어 강사로 활동하고 있는 Mantra입니다. 19 20 21 수능...
-
뇨 말투 누가 시작했냐 10
아오
-
수능 끝나고 즐겼으니 갓생달릴차례인데 아이디어가 고갈남 저탄수로 먹을건데...
-
서성한 가고싶습니다 ㅠㅠ (확통은 실채점 나오면 백분위 약간 떨어질것 같긴합니다..)
-
뇨 말투 이거 3
진짜 ㄹㅇ 개쌉 중독성 있음뇨
-
스카 화장실 오는데 뒤에서 저 부르더니 저기..혹시 임용 2차 준비하시나요?...
-
날씨뭐냐 ㄷㄷ 0
윤석열 개새끼같네 이거 ㅋㅋㅋㅋㅋ
-
이건 진짜임뇨... ..
-
가서 레이저로 상처주고 치료하면서 안티에이징하던데뇨
-
10km 완료 7
-
07이고 내년에 과탐 선택 고민중인데 화2를 할까 생각중인데 화2가 만점 목표면...
-
x에 대한 항등식을 세우면 안 되겠군
-
재수해서 과기대 기계공학과 재학중인데요 성적은 언미생지 87 85 2 92 93...
-
5달정도노력하면외모백분위를4까지올릴수있지않을까기대중임뇨
-
2020~2024 국어 독서 영역 수능 기출에서 한 지문만 나온대요 모든 지문을 다...
-
린 귀여움 17
-
하체 미친 7
개힘드네 다리에 주기적으로 힘풀리는거 억지로 붙드는중 집까지 또 한 20분 걸어야하는데 ㅋㅋㅠ
-
사실 안들어봄 들을 가치 있나용 강사 추천도 해줘 ㅜ
-
그래야만 한다
-
난 귀여움 2
우
-
시발 말이 안 됨 ㅋㅋㅋㅋㅋ
-
보내주세요
4월 교육청 첫번째 구조가 어떻게 되는 거죠?
억.; 그리고 저 삼수선 문제는 풀이가 너무 멋있네요. 배우고갑니다.
아 아닙니다. 그림보니까 알겠어요.
좋아요 누르고 갈게요. 닮음 보는 연습좀 해야겠네요.ㅋ
네~^^ 훈련하시면 매우 도움이 될 거에요~^^
이번 4월 문제 풀이에서 B1G1E1 삼각형 넓이 구하는 과정이 이해가 안되네요... 어떻게 5등분이 된다는 걸 알 수 있나요?
저만 모르는 건가요
옆에 정사각형 하나를 더 붙이니까요,
연장선이 꼭지점에 딱 붙네요! ^^ 그러니까 닮은 삼각형이 만들어 집니다.
그리고 닮음비는 1:4 가 되네요. (그림을 잘 보세요)
그러니까 5등분입니다~^^
근데 무한급수 도형문제가 평가원 핀트에서 좀 벗어난 문제 아닌가요? 선생님의 의견이 궁금합니다. 평가원에서는 이쁜도형들만 주어지던데 ㅠㅠ 실제 수능에서는 저렇게 어려운 도형문제가 나올가능성이 있는건가요?
평가원 마음은 그들만이 알지요^^
좌표도입으로 풀던, 무게중심으로 풀던 사실 큰 차이는 없습니다.
그리고 예쁜도형이 나올지 안나올지는 잘 모르는 것이니까요~^^
그런데, '닮음'도 연습해두면 꽤 쓸모가 있는 것이라서요~
그리고 이과의 경우라면, 반드시 연습해 두시는것이 좋습니다~^^
베..베르테르라니...
제대로 킬러대비가 될 것 같지 않으세요? ^^
명쾌한 풀이 잘 보고 갑니다. 저 문제를 풀때 제끼고 마지막에 시간 많이 남아서 좌표로 풀었었는데 닮음을 썼으면 안그랬어도 되었겠네요. 연습 많이 해야겠습니다.
연습하시면 금방 보이실 겁니다~^^
자.; 이글 보시는 모두에게 질문합니다.
저거 맨 위에 있는 문제 위치벡터로 세 점이 한 직선위에 있을 조건 이용해서 몇대몇 내분인지 일일히 구해서 푼사람 저밖에 없나요?;;;;
고생하셨어요ㅜ
하지만 맞으신거죠? 잘하셨습니다~^^
베르테르 방학쯤에 혼자꼭풀어보려했던건데..강의가나온다니
꼭듣겠습니다 ㅋㅋㅋㅋㅋ문제난이도가 장난이아니라길래
혼자할수 있을까했는데 잘됫네요
기대에 부응하는 강의를 찍어보도록 할게요~^^
쪽지 답장 부탁드려요 선생님 ...
답변드렸습니다~
베르테르라면....예전부터 있던 77제를 얘기하시는건가요???
아니면 변형또는 추가되는문제가 있나요???
베르테르님의 초기 77문제와~
이후에 작업하신 60문제 중에서 선별 작업 후에 시작 할 생각입니다~
선생님 한번만더 쪽지 답장 부탁드립니다...
답변드렸습니다~
오 선생님 멋지네요~~ 살아있네~
감사합니다~
베르테르 공도벡 강좌는 어느정도에 나오는지 알수 있나요? ^^
개강은 아마도 5월말이나 6월 초(평가원 끝나고) 정도로 생각하고 있습니다~^^
아직 확정된건 아니라서, 조만간에 공지해 드리겠습니다~^^
닮음 1:4 찾느라 고생했습니다..
수고하셨습니다^^ 하지만 레벨업이 금방 되실거에요~^^
쪽지 보냈습니다. 답변부탁드려요 :)
답변드렸습니다~
이번엔 애기 한명만 올리셨군요.
네^^
나중에 와이프한테 한소리 들었어요 ㅋ '닮음' 글 쓰면서 애는 하나만 올리냐고 ㅋㅋ
헷갈리네요.. 진짜 한명인가요? 저는 닮음드립친건데..ㅎ
ㅋㅋ
아무리 봐도 저 삼수선문제 닮음찾는거에서 '기울기' 를 이용한 게 정말 괜찮네요.;ㅠㅠ
기울기를 비롯한 기본적인 것들이 기하파트에서는 정말 중요하죠~^^
쪽지확인부탁드려요
답변드렸습니다ㅠ
감사합니다ㅜ
도움이 되시길 바랍니다! ^^
저기 첫번째 문제에서 공비구할때 전체가 9등분인거 어떻게할고 저 정사각형이 딱 들어맞는지 어떻게 아는거죠 ?? ㅠ
첫번째 그림에서 1:2 이니까 변의 길이가 3등분 되었네요,
그래서 가로세로 보조선을 그으면 전체 9등분이 됩니다.
그리고 문제조건에서 대각선에 수직으로 긋는다고 나와있잖아요~ 그런데 거기가 1:2내분점이었으니
딱 한칸에 대각선이 되는 것이죠~
따님 눈매가 샘 닮아서 완전 똘망똘망하네요ㅎㅎ
넵~ 감사합니다~^^ 잘커야 할텐데요 ㅋㅋ
전 좌표로 풀엇는데 ㅎㄷㄷ 하네여 ㅠ 굳!!
넵~ 도움이 되셨으면 좋겠어요~^^
4월 교육청에서 맨 처음 s1 s2 합이랑 s1 s2 나오는거 어떻게 되는거죠??? 왜 이해가 안되지 ㅠㅠㅠ
이해했습니다... 답 안해주셔도 되요 ㅎㅎ
넵~^^ 이해하셨다니 레벨업 하신거에요~^^
오와 생각도 못했던 방식이네요 기울기활용이 진짜 대단하다고 생각되요
감사합니다!
네~ 감사합니다~^^
감사합니다 따른것도계속올려주세요^^
네~ 종종 올릴게요~^^
베르테르 다행이네요 ㅠ.ㅠ 꼭들을게요 ~~ 나오면꼭말해주시길 ! : )
아직 기획중이라서요~^^
확정되면 알려드리겠습니다~
아. 4:1 지금 이해됬습니다.. 수업시간에 이해안됬었는데(이러면 안되지만 ㅎ...) 그 닮음 훈련하는 자세한 방법좀 알려주시면 감사하겠습니다..
자세한 방법이랄거 까진 없고,
이차곡선이랑 공도벡 기출문제들 풀면서
닮음들을 전부 찾으시면서 훈련하시면 됩니다~^^
이글 2주전에 보고 4:1 못찾았었는데 다시보니까 보이네요..기뻐요 ㅠㅠ
좋은 게시글 감사합니다!!
네ㅠ 저도 기쁘네요ㅜ
이런 글들이 도움이 되기를 바래요~^^
닮음도움 많이 됏어요 감사합니다
감사합니다~^^
저런 문제에 대한 보는 눈을 키우고 싶다면, 오르비에 칼럼을 찾아보라하셔서 읽으러 왔는데. 이거 선행반때 수업해주신 부분이네요? 그때 수업들으면서 완전 신기했는데ㅎㅎㅎ이번 3월 모평때 저도 연장선 그려서 엄청 쉽게 풀었어요!ㅎㅎㅎ '수혁쌤이 보조선이랑 특수각 이용해서 풀랬지.난 싸인코싸인 이런거 좀 약하니깐 보조선으로 풀어야지' 이렇게 생각하면서 연장선 딱 그리니깐 닮음이 보여서 엄청 빨리 풀렸어요ㅋㅋ선행반때 프린트 어딘가에 방치해뒀었는데, 오늘 생각난 김에 다시 찾아서 풀어봐야겠어요ㅎㅎ
이건. 약간의 여담인데..
학원에 수학과 선생님들은 딸바보 아빠들이 많으신거 같아요ㅋㅋㅋ
수김쌤도 수준쌤도.. 글구 수혁쌤두요!ㅎㅎㅎ쌍둥이들 완전 이쁘고 귀여워요ㅎㅎㅎ
맞았으니 잘했네요^^
그리고 딸바보ㅋㅋ 어쩔수 없는것 같아요~^^