-
재수 망하고 펑펑 울면서 수능치려고 군대 갔습니다. 848 군번 동기 잇었는데...
-
영어 수학을 너무 못봤음..
-
화작런 고민 3
평소 모고볼때는 언매 1~2틀 이었는데 수능날 갑자기 4틀 해서 언매 무서워졌는데...
-
이거였음
-
나는 희망을 먹고 살아가는데 그 희망을 앗아가면 나는 무엇으로 살아가야하는거지 나는...
-
성인된지 1년도 안됐는데
-
이거만큼 재밌는 과목이 어딨다고
-
두통 배탈 요통 치질까지 걍 내 인생이 개씹주작이었으면...
-
그냥 일반 패스 사면 안되나? 어차피 재종반 들어가면 교재비 많이 안들어갈거같은데
-
IMF에서 한국에 경고하는 뉴스 영상에 댓글보니까 돈 있는거 다 금이나 미국주식...
-
공부 엄청 시킨다는데 사실인가요? 진지합니다..
-
죄송합니다 7
사실 영어 기출 제대로 안 풀어봤습니다
-
왜 벌써 주변에서 라이브 신청관련얘기가 나오지.. 지금 신청받나요?
-
롤 채금 먹음 6
원딜인데 봇 터졌길래 봇이터졌다했는데 이게 왜?
-
구조라던가 논리가 기출 복붙 수준이긴 한데 오히려 그래서 기출복습하는 느낌도 들고...
-
올해 밖에 5번 밖에 안나갔지만 인싸임 ㅇㅇ
-
오늘 저녁 1
황올 가격값해서 자주시킴
-
투표는 범죄다 7
인생에 대한 범죄
-
어머나..
-
제가 시발점을 듣고 각종 자이,쎈,일품 교육청기출 같은 문제집을 풀 계획인데 저런거...
-
이만하다 이거 보여주려고 어그로끌었다.나루토 리메이크 나옴.빨리 보러 가셈.
-
릴스 보다가 터졌음 10
예전에 반톡은 아니고 친구들 단톡에 실수로 히토미링크 올렸다가 나에게만 삭제 눌러버려서
-
자료 차이 없는거죠? 보통 자료가 라이브 시작 전에 배송 오나요?
-
코엑스는 중국말 밖에안들리는데 더현대는 일본사람 밖에 없는지 역시 트렌드의 일본이라그런가
-
서경대 0
서경대 3개년 평균컷보다 높은데 왜 2칸뜰까요? 버근가 전체지원자 176/417...
-
하 시발 걍 자살하먄 그만이긴 한데
-
표점 컷 보니까 화작이랑 언매 3점차나고 미적이랑 확통도 3점차나던데...이거...
-
인문은 924 사과대는 917인데 어디과든 ㄱㅊ 발뻗잠 ㄱㄴ?
-
어 저 선배가 하네? 나도 해봐야지 어 저 새끼가 하네? 나도 해봐야지 가 몇십년...
-
아무생각없이 몰입할 수 있는 공부가 최고
-
1~2정도맞으려면 뉴런,기출코드 같은 강의정도는 필수이죠?
-
그만 느끼고 싶구나
-
해주기로 했는데 고2 모의고사 기준 4-5등급 이라는데 뭐 시키는게 좋을까요?
-
삶의 의미가 없음 죽을만큼 힘들어도 그냥 내가 하고싶은 걸 하고싶음
-
유후
-
사탐이 개꿀인 거 겉기도
-
다른 대학은 모르겠는데(외대는 전적대라 복전이 전과보다 쉬운걸로 앎) 경희대는...
-
산화당햇나 설마
-
물리 47-48 7
표점으로 합쳐질 가능성 있겠지만,,, 확률이 높을까요?? 진짜 진짜 구분됐으면 좋겠네요..
-
난 이런거에 안맞는 사람같음 치열하게 살고 싶은데 주변사람들이 그런 사람이 적긴함...
-
교수 때문에 너무 스트레스 받는다... 우리과 진짜 왜이러냐?? ㅋㅋㅋ
-
수학 미적 80이고 만점 목표입니다. 인강없이 현강만하시는 선생님 수업...
-
널 믿어 내가믿는 너를 믿어
-
저녁 뭐 묵지 2
배고프네
-
글자만봐도 흥분되요 느아아...
-
야짤 투척 3
미안하다 이거 보여주려고 어그로끌었다..나루토 사스케 싸움수준 ㄹㅇ실화냐? 진짜...
-
애옹
-
날 놀아줄 친구가 있지 않은가
-
난 멍청이 5
멍청멍청빔
28
틀렸습니다ㅜㅜ
아 아래 피카츄님 댓 보고 알았네요
aa가 아니라 aa'이군요 ㅋㅋㅋ
식은 맞았는데 깝쓰..ㅠ
아...그랬군요 진짜 아깝네요ㅜㅜ
풀어주셔서 정말 감사합니다!
모든 항의 계수가 유리수 + 미분계수가 0인 지점에서 연결이 되어야 하고, 일대일대응 조건과 fexp(f)가 양쪽 끝에서 점근선 y=0을 갖고 이차함수 대칭축과 동일한 선대칭임을 생각했을 때
f(1)= -1이고 f(0)=8이어야 하는데 최고차계수가 -1이면 그러한 이차함수가 존재하지 않는 것 같습니다...
캐치하지 못한 게 있을까요.
평행이동한 이차함수와 f exp(f)가 아구가 맞아서 증가함수가 되어야 하니깐 a=연결지점=1이고
따라서 f는 x=0 선대칭. 이런 식으로 생각했습니다.
아 설마 이거 f(1)=0이라서 초월함수 미분계수랑 이차함수 ㅁㅣ계랑 우연히 맞아떨어져서 연결되는 건가요;이러면 계수에 무리수가 없어도 가능할 것 같긴 한데
이러면 g'=0이 no solution이 되어버려서 안될 것 같네요
f(0)=8이 나온 과정을 여쭤봐도 될까요?
풀었습니다
α=1
f의 대칭축을 x=k라고 하자.
1-k= a
f(1)= -1 , f(k)=8
-> f(x)= -(x-k)^2 +8
-> -(1-k)^2 +8 = -1
-> (1-k)^2 = 9
-> 1-k= 3 := a, k=-2
f(x)= -(x+2)^2 +8
f(aα)= f(3)= -25+8=-23
23
ㅠ 제가 틀렸군요
제가 틀렸을수도...
잘 푸신거 같은데 답이 계속 달라서 뭐지 했네요. 마지막줄 계산실수 빼고 답 맞습니다ㅎㅎ
엌ㅋㅋㅋ17이근요; 어떻게 계산을 저따구로 했지
정답!ㅎㅎ
풀어주셔서 감사합니다~
1-k가 -3이 왜 안 되는지 좀 알려주시면 안 될까요???
1>k이기 때문입니다. 대칭축이 1보다 왼쪽에 있어야 해서요
아하 감사합니다!!
해볼까하다가 안 했는데 도전해봅니다
저는 답이 없는 걸로 나오는데 부탁드립니다
아 뭐야 a랑 α였군요 폰으로 작게 봐서 둘다 a인줄...에휴 제가 잘못 봤습니다 문제 없을 듯
헉 ㅋㅋㅋㅋ
아ㅋㅋㅋ담부턴 헷갈리지 않게 만들겠습니다
답이 2인가요 왜케 느낌이 불안하지
틀렸습니다ㅜㅜ
x>1에서 미분한걸 계속 f(X)2+f'(x)로 봐가지고 f'(1)=-1 나와가지고 고민했네요 ㅋㅋ 왜 미분을 못해가지고 이러지
17...?
정답입니다!!
풀어주셔서 감사합니다~~
감사합니다 !! 계수가 유리수란 조건이 기출에서 본적이 있어서 아이디어를 좀 쉽게 얻은거 같아요!
아하 그랬군요ㅎㅎ