Evolved Slave II [872525] · MS 2019 · 쪽지

2021-03-13 10:20:21
조회수 18,119

가장 어려운 수능 문제가 좋은 문제인걸까?

게시글 주소: https://m.orbi.kr/00036664015

안녕하세요 오르비 닉 'Evolved Slave II'입니다. 오늘은 오르비 닉 'Inspector Javert' (프로필: https://orbi.kr/profile/1005325) 와 1, 2편을 나누어 수능 출제범위에서 문제를 풀 때 어떤 요소로 좋은 문제가 되는지, 어떤 문제를 어디까지 봐야 충분히 공부를 한 건지에 대한 거에 '대략적인' 테두리를 소개해보고자 글을 작성합니다. 



왜 '대략적인' 거냐고요? 정확한 테두리는 유명 강사분들도 명확히 제시하기 매우 어려울 뿐만 아니라, 혹여나 제시한다해도 출제자가 바뀌는 수능 특성 상 매너리즘 탈피와 강사 저격용으로 이를 벗어나서 출제할 가능성이 농후하기에 '최소한 이 정도까지는 누가 내든 고려하게 되는 거다!' 라는 걸 소개하고자 하는 겁니다.



제가 '기출편' 1편을 맡을 예정이고 Inspector Javert 이 분이 '자작문제' 2편을 소개할 예정입니다. 제가 소개하는 글은 주로 수능 1등급대를 노리는 학생들이 기존 기출을 봤을 때 느끼는 매너리즘 탈피 및 관점 확장을 위한 글로, 어려운 수능 문제에 대해 다루기는 하지만 이에 대한 해설 위주라기보단 '왜 이게 좋은 문제인가?'에 대한 이야기가 주류가 될 겁니다. 난이도 높은 뚝배기가 날아가고 싶은 문제를 보고 싶고 수능 1등급만이 아닌 고정 만점을 목표로 하는 분들은 2편을 참고하시는 게 더 도움이 될 겁니다.



제목에서 말한 바와 같이 과연 가장 어려운 수능 문제가 좋은 문제일까요? 그럼 좋은 문제의 기준은 무엇일까요? 이는 출제 기관마다 변별 목표로 하는 학생의 수준이 다르고 출제자마다 지향하는 목표에 따라 상이할 수도 있지만 한정된 시간에서 정해진 문제를 풀어야 하는 시험 특성 상 


1. 제한된 시간 안에 단순 연산력이 아닌 사고력을 기반해 교과 과정 내용으로 명료하고 논리적으로 풀이를 전개할 수 있는 문제


2. 교과 과정 외 내용으로 풀 수도 있지만 이를 사용하는 것보다 교과 과정 내용으로 풀면 더 간단한 문제


3. 더 초등적인 내용을 기반으로 풀이 확장이 가능한 문제


4. 다양한 풀이가 가능하고 각각의 풀이의 내용이나 난이도가 크게 차이가 나지 않는 문제


이런 기준점들이 있을 겁니다. 정말 평이한 내용들이죠. 근데 수능에 나온 어려운 문제가 과연 이런 조건들을 다 충족했을까요? 그런 것도 있고, 아닌 것도 있으며, 심지어 '쉽다'라고 평가받은 킬러 중에서도 이런 요소를 더 잘 지켜낸 아름다운 문제도 있습니다. 이에 대해 하나하나 소개하겠습니다.




우선 191121(나형)입니다. 해당 문제는 현장에서 푼 학생들에게도 평소 킬러와 달리 많이 쉬웠습니다. 근데 이 문제가 기출로 풀 때 단순히 '쉬웠다' 하나로 해설대로 풀고 넘어갈 정도로 단순했던 문제일까요? 아닙니다. 


우선 이 문제는 접근할 때 g(x)를 나눴는지 f(x)를 나눴는지부터 갈림길이 시작됩니다. '모르는 함수도 아니고 삼차로 준 f(x)로 나누는 게 당연하다!' 이런 식으로 접근한 게 아니라면, 그냥 별 의심없이 관성대로 첫 단추를 시작한 겁니다. 


그러고 난 뒤에 (나) 조건과 g(x)의 실수 전체에서 연속 조건으로 f(x)가 x를 인수로 갖는다는 걸 파악하고 f(x)가 (x+3)을 인수로 가질 수'도' 있지 않을까라는 의심이 든 순간 f(x)가 또 다른 인수를 가지면 해당 값에서 f(x)=0이 될 시 g(x)가 연속이 될 수 없음을 생각하고 난 뒤에야 f(x)=x(x²+ax+b)(a,b는 실수)에서, 다항식 x²+ax+b에서 판별식 D<0 조건을 생각하는 겁니다. 그 다음부터 풀이는 여러분들이 풀었던 풀이대로 쭉 계산해서 답을 구하면 됩니다.


정말 예쁜 문제죠. 하나하나 나눠보면


1. 순수 연산으론 함수 자체를 특정해서 풀 수 없으므로 삼차함수 그래프의 조건을 생각하는 문제이고,


2. 삼차함수라 미분을 써야 하는 문제라 생각할 수도 있지만 정작 더 기본적인 내용인 고1 때 배운 이차다항식의 판별식 D를 바탕으로 풀리는 문제이고,


3. 그래프로도 그리다가 x=0에서 f(x)=0임을 찾아내고 똑같은 결론을 낼 수 있지만 수식이든 그래프든 발상의 난이도 차이가 크지 않은 문제입니다.



사실 여기서 더 나아가면 'f(1)이 자연수이다.' 조건도 교과과정 상 줄 수 밖에 없는 이유가 있긴 한데, 이는 복소수 체계와 관련이 있어 그닥 추후에 수능 출제에 결정적인 요소가 될 것 같지 않아 생략하도록 하겠습니다.(한 번 이유에 대해 고민해보실 분들에게 힌트를 드리자면 복소수 체계 자체는 고1 때 배운 것이므로 삼차함수의 계수가 복소수가 될 때를 논리적으로 빠뜨릴 이유 자체가 없습니다 ^^ 물론 xy좌표계로 나타내는 가시적인 실수 좌표계라는 전제로 퉁칠 수도 있지만, f(1)이 자연수 조건을 조금이라도 바꿀 시에 판별식 D<0 조건을 쓸 때 판단 요소가 상당히 어려운 문제가 됨은 변함 없습니다.)


난이도가 훨씬 높다 평가된 예시 중에서도 이런 문제를 찾을 수 있습니다. 아이러니하게도, 해당 문제의 풀이가 발상 하나하나로는 앞에 소개한 문제보다도 더 단순하고 간단합니다. 181130(나형)입니다.



문제랑 조건을 보면 훨씬 길고 어려워보입니다. 네, 문제 풀이 전체로 보면 이게 더 어렵습니다. 근데 발상 하나하나는 이게 더 쉬워요. 풀이를 굳이 쓰자니 이전에 있던 글 링크에 사진으로 깔끔하게 정리된 손글씨 해설이 있으니 링크로 대체하겠습니다.(https://orbi.kr/00023778292


간략하게 요약해 말하자면, 이 문제는 '단계'가 많습니다. 호흡이 길다고도 하죠. 근데 이런 문제가 진정 아름다운 문제인 이유는 어려운 난이도에 있지 않습니다. 이 단계 하나하나로는 쉬운 4점 내지 어려운 3점에 미치지 않는 단순함에서 비롯되는 것이죠. 즉, 생각 몇 번으로 3점짜리가 꼬리에 꼬리를 물고 5개 붙어있는 문제 형태로 바꿔서 풀 수 있다는 점입니다. 


그리고 계산이 상당히 많다고 생각할 수도 있는데, 막상 파악이 끝난 상태에서 풀이를 들어가려 하면, 지저분한 계산들이 g(x)정의역에 의해 1차로 쓱 지워지고, 특정 수를 잡아두고 하나하나 더해가는 초등학생도 시도해볼 만한 접근법에서, 생각보다 더할 수가 많이 적다는 것도 얻어갈 수 있습니다.



위에서 보실 수 있다시피, 결코 쉬운 문제라 해도 쉬운 거에서 끝나지 않고, 어렵다 하는 문제라 해도 결코 어렵다에서 끝나지 않고 더 생각할 게 남는 이런 문제가 진정 좋은 문제라고 할 수 있습니다. 오히려 어렵게만 내려 하다보니 출제자가 생각한 방식 외에는 답을 낼 수 없는 풀이 수렴적인 문제가 생길 여지가 있을 수 있는 상황에서 다양한 풀이를 수용할 수 있는 문제를 내는 딜레마 속에서 난이도는 낮춰도 훨씬 좋은 문제를 많이 만드는 방식으로 변별을 할 수 있는 게 수능입니다. 


물론 2편에서는 이런 상황과 반대로, 더 어려운 문제를 맞닥뜨릴 때는 제가 1편에서 소개했던 '문제 조건 뜯어보기'를 통해 얻은 기본기를 바탕으로 어디까지 확장을 해 나가야 하냐에 대한 답을 얻으실 수 있을 겁니다.


오늘은 여기까지 하겠습니다. 긴 글 읽어주셔서 감사합니다!

rare-경찰 오리비 rare-기출파급 미적분상 rare-기출파급 수학2상 rare-골드바

0 XDK (+520)

  1. 520