B형 30번이요
게시글 주소: https://m.orbi.kr/0003700434
거리 함수 미분이 그렇게 복잡하고 미련한 풀이인가요?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
담배도 안하시고 술은 집에선 안드심 폰케이스는 얼마전에 사드렸는데...
-
일단 지방약수랑 연고공도 공부 못하는 취급 당하는 곳이고 거기 올라오는 말들 보면...
-
듣고 해석하고 복습하고 막 하다보면 1강마다 거의 2.5-3시간 걸리는 거 같은데...
-
ㅇㅇ. . .
-
겨울 강변 경치 = 낭만 치사량임
-
시킬 게 없네
-
나이스 0
한칸 올랐다 후
-
독서 풀어보려 하는데 어떤가요???
-
하고싶은 공부는 나중에 자리 잡고나서 사이버대학이나 대학원으로 정말 원없이 할 수...
-
이제 고2 되고 강기본 하고있어요 고1 모고 강기본 하기전엔 4,5 떳어요 지금은...
-
ㅈㄱㄴ
-
손시려 ㅅㅂㅅㅂㅅㅂㅅㅂ
-
29번이라기엔 좀 쉽고 27번이라기엔 꽤 어렵고...? 학교 수행용으로 만들었던...
-
자기 실력에 한참 못 미치는 대학을 내보기만 해야하는 성적을 받고서야 이제서야 고교...
-
내 성향이 어떤지 고민해봐야겠음 전 성과가 나와주거나 흥미가 유발되어야 집중 하는 타입이긴 한데
-
낙지에서 0
지균은 아직 정확도 완전 낮다고 봐야겠지?
-
세상의 모든 학문을 배워보고 싶다는 소망이 있어요 근데 미래는 없을거 같긴 해
-
좋은 아침 12
다들잘주무셨나요
-
어디까지 될까용??
-
9월쯤에 재종에서 저녁먹으러 나왔는데 핑크빛하늘봄 ㄹㅇ 개이뻤는데 폰이 없어서...
-
반박안받음.
-
반영비만 놓고 보면 인문쪽이 더 나은데 고대 경영은 충원율이 높아도 빠져나가는...
-
점메추 받음 2
뭐먹지
-
이래도 제적 안시키던데
-
성대 변표 내놔 0
영어 3등급 살려줘
-
첫차로 아반떼 hd 어떰? 등하교용임
-
sn 독학 기숙 가려는데 아는게 별로 없어서 혹시 다녀보신 분들 계실까요?
-
부산사람인데 8
부산대도 많이처박았구나 5년전에비해
-
4명 뽑는 과 예비 1번 합격 기원 6일차 입니다. 내일 충원 합격자 발표 나오는데...
-
ㅃㄹ 전부 모공으로 실지원 넣어라 오늘 그림나오면 존잼인데 ㅋㅋㅋ
-
옆동네는 의평원으로 분탕치면 바로 매장당하던데…ㅋㅋ
-
파파존스 먹고싶네요 13
파파x츠
-
겨울방학동안 할 것. 12
국어 피램 생각의 전개 문학&독서 1회독 전형태 언매 올인원&나기출 언매 수학...
-
왜 또 모집정지 메타냐뇨
-
크럭스 대기 빠졌다고 문자 왔는데 문자에 있는 예약 링크랑 사전조사서 링크는 결제...
-
저도 오르비 아니었으면 바로 쌩재수행이었을 거에요 몇 안 되는 정시파이터 애들이...
-
컷기준 경북의 <경북모공한번 가보자 시대갤의 화력을 보여줘라
-
어떤분은 이명학 풀커리 타시고 어떤분은 이명학 + 션티 섞는분들도 있고 어떤분은...
-
과외.. 2
다들 과외 어디서 구하세요? 수학과외 구하는데 과외는 처음이라.. 과외앱?이런데서 많이 구하나여??
-
수업 3000+3000이나 3000+5000 듣는걸로 바꼇으니 인증철회 이럴 수도 있냐요?
-
상지한이었나 합격증 콜렉터 하겠다고 안 갈 학교 전화찬스 붙잡고 합격증만 받고 등록...
-
국수영탐 6월 24311 → 9월 23312 (수학 뽀록) → 수능 453**...
-
https://theconversation.com/america-is-increasi...
-
님들 국어 공부 0
재수 시작했는데 마닳이나 창우쌤 둘다 1월이 오픈해서 그따 부터해도 괜찮으려나요...
-
그냥 아~ 괜찮게 갔네 정도려나 뭔가 서연고는 와~인데 성대부터 조금 인식이 바뀌는거 같음
-
현타 ㅈㄴ 오네 최초합에서 추합 결국 불합까지 뜰게 보이니 걍 쫄튀해야되나 진짜...
-
추추추합 뱃지 질문 12
1. 반수할거라 집근처 대학 8칸 걸어놓고 갈거임 2. 근데 뱃지를 달고싶음 3....
-
언제나오나요
-
ㄹㅈㄷ늦버기 0
무휴반하는 꿈 꿨어요
-
왜 만두 두개먹고 배부른거지...이해가 안된다
좋은풀인데 누가그러나요
별로 복잡하지 않아요 그렇게 풀어야 제일 명확하고요
법선을 이용한 풀이는 엄밀하지 못한 풀이인가요?
거리식 미분에 비해 계산은 간결한데,,, 뭔가 명쾌하게 답인느낌이 안들어서(일단 맞기는 맞았습니다만은...)
엄밀한데...
고교 수준에서 엄밀하지 않은데 직관적으로 충분히 해볼만한 타당한 추론이다
이게 맞는말입니다.
점에서 원의 반지름을 늘려가다보면 접하는 점이 거리가 최소일 것이고 , 원에 외접하므로 그 점을 지나며 원에 접하는 직선은 점과 원의 중심을 잇는 선분과 수직이므로 ~~ 비약인가요?
그냥 고등학생 입장에서는 시중문제집을 풀 때 필요한 직관적 사고 요소중 하나다 이정도?
다만 이 부분은 시중문제집으로부터 습득 후 암기된 사고인 것 같습니다. 라그랑주 승수법이라고 있어요 ㅋㅋ
http://blog.naver.com/mindo1103?Redirect=Log&logNo=90154212128
참고하시면 될듯 합니다.
와 역시 수학전공이시라 그런가 다르네요 ㄷㄷ 배우고 갑니다
저도 그렇게 생각하는데 다른 풀이를 하신 분들이 그렇게 풀면 계산이 복잡하다고들 하셔서;;
법선을 이용한 풀이가 엄밀하지 못한 건 아니지 않나요?
한 정점과 어떤 곡선의 한 점을 이은 직선이 그 곡선 위의 점에서의 법선이 될 때. 그 거리 함수는 극대 또는 극소입니다.(그중 최대, 최소도 있겠구요.) 결국 법선을 이용해 구해서 여러개가 나오면 비교하면 되는 것 아닌가요.
그리고 법선으로 풀면 계산은 정말 간단하게 나오는데.;ㅋ
아.. 폐곡선이 아닐 수가 있어서 법선으로 거리의 최댓값을 구한다 하면 엄밀하지 않을수도 있다고 생각 할 수도 있지만 주어진 문제는 최솟값에 해당하는 점을 주었잖아요. 그럼 엄밀한 풀이가 되지 않나요?
왜 법선으로 풀었을 때의 점이 항상 최소가 되는지 이 점이 증명되어야지 엄밀한 풀이라고 할 수 있지않나요
문제 이해하고 바로 이걸로 손이 스사샥 움직이니까 스르륵 금방 나오지 않나요? 거리가 루트 씌워진 다항함수로 나오니까 그 다항함수를 미분하고 s=2/3를 대입하면 값이 0이 되고 그 때 t와 미분계수를 샤바샤바해서 넓이 식에 대입하면 k가 땋! 하고 나오는 거 문제 이해하니까 그렇게밖에 될 수 없구나 라고 생각했는데