<3월 학평 후 마음가짐과 수능 출제 경향의 변화,규칙성문제 4가지 풀이>
게시글 주소: https://m.orbi.kr/0004421296
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
아시나요.... .? 낮잠자고 옴.. ..
-
각각 3등급확보 2등급확보 목적으로 만든거라는데 한등급씩 내려야하는거 아님?...
-
3 15 22 30틀 85점 사람들이 어렵다고 말하는 거 치곤 쉬움 특히...
-
공부 끝나면 갈까 하
-
그래프 풀이인가요?
-
요즘 실모 풀 때마다 둘 합쳐서 55분~9시 사이에 끝나는데 현장에서 이정도면...
-
답지 보면거 익히는 수 밖에 없죠?
-
유튜브에 짧게 돼있는 거 다시 하고있는데 생각보다 재밌음
-
뭔가 다지는 느낌이 없고 걍 무지성으로 문제풀어재끼고 실모 풀어재끼는거같은데 이러면 수능 조짐?
-
오유란전, 춘매전 11월전에 어디 유튜버가 찍은적 없죠?
-
20만원 벌었네
-
ㅅㄱ
-
국- 국물 있사옵니다 현대시- 꽃 피는 시절 고전 소설-오유란전 사실 그냥 내가...
-
심장이 빨리 뛰니까 집중이 더 안 되네
-
대인관계 정상화
-
몇일까요
-
답이 1번인데 1번이 답이라는건 알겠는데 2번도 맞지 않나 싶어요 2번선지 전제로는...
-
??
-
적중예감 하트 리트 시대 서바/전국/브릿지 몇 개?에 손고운꺼 조금(쓰레기라 더...
-
유명함?
-
그 반대로 하면 정답 확률 올라갈 거 같아서 여전히 필요함...
-
캬캬
-
11투스 2
성적표 나오나요? 나오면 며칠에 나와요??
-
킬캠 시즌 0
시간상 1.2 중에 하나만 풀고싶은데 뭐추천합니까??
-
12000명 실화냐
-
아 슈발 그것도 모르고 8캔 사고 얼음컵 사니까 2만원 가까이 나와서 당황했네......
-
오늘부터 다시 맘먹고
-
공지 사항이나 정오표로 정정 안 하고 수강생들에게만 쪽지를 보내서 정정하는 파렴치한 경우도 있나요?
-
아으 추워 0
겨울 다 됐네
-
수능목표 11321
-
협곡은 좀 오래하기 빡셈
-
내년고3되는데 올핸 메가패스쓰긴했는데.. 국어를 대성들을거같아서 고민이ㅔ요
-
지난 2년간 수능 끝나고 폰 받자마자 수능장에서 국수 빠른채점 돌림… 근데 올해는...
-
적중예감 보면 항상 30점대 후반을 맞아요... 진짜 어쩌죠ㅠㅠ
-
모레 바로 수능보기
-
아오
-
☆대성 19패스 phil0413 추천해주시면 감사하겠습니다. 서로 1만원권 받게요^-^ 1
추천 아이디 입력하면 메가커피 1만원권 같이 받을 수 있대요 !! 대성패스와 함께...
-
다들 사놓고 지금까지 안 푼 책 몇 권 정도 됨??? 나만 못 푼 거 많아서 아까운...
-
탈릅한 사람 프로필 누르니 502 bad gateway 뜨네 1
원래 비둘기 얼굴 나오는 거 아니었음? 이거
-
내가 이러면 안 되지.. 힘내서 공부하러 갈게요 죄송합니다
-
72면 몇정도 되나요? 오랜만에 문학 다 맞췄는데 독서 다 틀려서 하.. 3...
-
심멘
-
수많은 저렙 노프사들의 기만의 향연...
-
작년에 대성 사전예약이 앞으로 1년 있을 패스 중에 가장 혜자 였는데 올해도 아마...
-
나랑 할 사람
-
히카 8 0
히카 7 너무 좋앗는데 8두 비슷한가요?? 푸셨던분들 답변 부탁드려요
-
저번주 화요일에 시작했고, 일주일 돌려서 18만원 정도 벌었네요 이번주와 다음주는...
A형 21번과 B형 20번 인것 같습니다
B형 21번은 규칙성 문제가 아니라 다른 문제 였거든요
글쓰는과정에서 실수...감사
오.. EBS경찰대 기출의 그선생님이시다.. 반가워요ㅎㅎ
계산이 많이 복잡해졌다는거 너무 공감되네요. 저도 이문제 계산실수로 틀렸는데 이런거 줄이려면 많이 풀어보는 방법밖에 없겠죠?
핵심유형을 확실히 알고 평소에 다양한 벙법으로 생각하다 보면
간단하게 풀 수 있고 그러다보면 실수도 줄지요
규칙성이 오락가락하는거라
이문제는 계차수열로 풀다보면 복잡해져서 실수가 나올 수도..
단순한 실수라면 후반으로 가면서 자연히 없어지니 걱정 안하셔도 됩니다
와 남언우 선생님이시다!!
2011년이었나 그 때 수능개념특강 1~2등급 전용 강의 정말 잘 들었어요.
그거 프린트해서 필기한거 아직까지도 가지고 있답니다.
선생님께는 정말 개인적으로 감사드립니다.
제 수학 실력의 밑바탕은 거의 선생님에게서 나왔다고 해도 무방할 정도입니다.
기억해주니 감사
당시만 해도 ebs가 상위권용 강의를 기획할 때라..
이후에는 하위권용 강의를 많이 개발하는듯...공익방송이고
전국에는 하위권학생이 훨씬 많으니 당연하지만 ..
그럼 벌써 3학년 ㅎ 이제 또 미래를 진지하게 생각할 때이네요
너무 너무 최고 였던 남언우 선생님...
우연히 클릭 했다 보여서 깜놀..
감사합니다
앞으로의 인생도 좋은 분들과 함게 더욱 발전하시길~
잘 들었습니다!! 마지막 방법 진짜 신기하네요!!
예를 들어 n(n+1)/2를 n으로 나눈 나머지를 An이라 할때
A1+A2+...A10을 구하라 와 같이
n(n+1)/2 를 n으로 나눈 몫이나 나머지를 갖고 수열 문제를 만들 수도 있습니다 그럴 땐 마지막 방법이 유효하겠지요
한 문제를 깊이있게 생각해본다는 것은 문제해결력향상이상의 효과가 있습니다
군수열로 푸는 첫번째 방법이 이해가 잘 안가네요.
홀수행이 1+2+3+~~~~~~~~(2n-1)이 되는지 알려주실분 누구 없나요?
n군(n행)에는 n개의 연속한 수가 있지요
1행에는 1개, 2행에는 두개, 3행에는 3개가 있으므로 3행까지 쓰인 수의 총 개수는 1+2+3=6이고 수는 1부터 연속해서 쓰이므로 3행의 끝수는 6이지요 마찬가지로
홀수행(2n-1)일때는 2n-1행의 마지막수이므로 그때까지
즉 1행부터 2n-1 행까지 쓰인 수의 총개수와 같습니다
따라서 1+2+3+...2n-2+2n-1 이 됩니다
아 잘못해서 비추천 되었네요. 죄송합니다.
군 수열은 쓴이유가 n의 배수가 마지막 숫자에 해당하고
홀수번째 군수열의 행의 개수 합이 일치하기 때문에 군 수열의 합을 쓴건가요??
추가해서 질문드리자면 해설로 볼땐 이해가 가는데 막상 시험문제로 나오게 되면 어떻게 저렇게 발상할 수 있을지 궁금합니다.
몇번째 수인지 찾으면 되는데 몇행의 몇째수인지 알 수 있으니 몇번째 수인지도 금방 알 수 있지요
군수열 문제 몇개만 풀어보고 훈련하시면 전형적인 유형에서 홀수행과 짝수행규칙이 반복되는 것임을 알 수 있을 것입니다
위 수열에서 기본적인 군수열문제가 되려면
10행 세번째 수는 얼마인가? 또는
48은 몇행 몇번째 수인가? 등이지만 조금 변형한 걸로 보시면 됩니다
수열의 규칙성 문제가 어떤게 있는 지 학습하시면 됩니다 발견적추론을 기본적으로 할 수 있어야 하지만 고난도문제는 발견적추론과 계차수열만으론 해결이 힘들 수 있습니다
본인이 알고 있는 것들을 생각해 보시면, 예를 들어
어떻게 등비수열의 합을 그렇게 구할 생각을 할 수 있을 까요? 더 어려운 계차수열도 알고 있잖아요?
학습입니다. 배우고 익히고...충분히 익혀 둔다면
다음에 비슷한 문제를 봤을 때는 충분히 생각할 수 있을 것입니다 생각해 보지 않았을 뿐 어쩌면 현재의 실력으로도 충분히 풀 수 있는 방법입니다