수학적인 영감 떠오름
게시글 주소: https://m.orbi.kr/00057613985
매개 변수에 관한건데, 보통 2차원 좌표평면에 그래프를 표현해야만 한다는 생각들을 하겠지만, x=t에 대한 함수, y=t에 대한 함수 이런 두개의 관계식이 있을때, t축을 xy 평면의 원점을 지나게 수직으로 도입하여 3차원의 공간을 만들어서 거기에 점들을 찍으면, 뭔가 2차원에서 ㅈ같이 표현되던게, 3차원에서 명확하게 드러날 '가능성'이 있다는 생각을 함. 예를 들면 원이 xy 평면에서는 그냥 동그란 원이겠지만, t축을 도입했을 때 마치 감자 꽈배기? 그런 모양으로 드러날 가능성도 있다는 거지. 물론 우리가 시각적으로 어떤 자료를 보고 이해할 수 있는 차원의 한계는 3차원적인 공간이 끝이겠지만, (3d는 생각할 수 있어도, 4차원은 생각 못하잖아. 그거 말하는 거야.) 그럼에도 불구하고 우리가 10차원, 100차원의 공간을 이해할 수 있다고 재밌는 하나의 상상을 해본다면, 좀 더 simplify의 가능성이 커지지 않을까?
그리고 좀 더 이 해석을 확장해본다면, 이건 언제까지나 유추에 불과하지만, 마치 2차원 평면에서 3차원 공간으로 사고의 틀을 확장했을 때, (그래프 차원에서)좀 더 본질에 대한 이해를 하기가 용이해지고, 쉬워진다는 사실로부터, 더 높은 차원에 대한 이해도가 직접적이진 않더라도, 간접적으로나마 함양된다면, 더 큰... 사고의 도약이 가능해지진 않을까? (2차원에서 보든 3차원에서 보든 4차원에서 보든 탐구 대상의 본질이 바뀔 것이라는 말은 아닌데, 3차원을 통해 보는 것이 더 쉽게 본질에 대한 이해를 시켜줌으로써 본질에 대한 접근을 2차원일 때에 비해 용이하게 만들어준 것처럼, 차원이 높아지면 이에 따른 탐구의 용이성, 노력의 필요성의 줄어듦 같은 효과에 의해 더 높은 수준의 이해까지 나아갈 수 있는 계기를 마련해 줄 수 있을 것 같다는 말임. )
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
200점이라서 글쓰기누르니 차단된 사용자라고 뜨더라 ㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ
-
어디감? 웃음기빼고
-
아침 ㅇㅈ 1
-
스엠 순애 뭘 해도 재밌을거 같아
-
새해 복 많이 받으세요! 감사합니다.
-
일어나자마자 벌점부터 확인했네
-
오르비에서 몇개의 인생을 망치고 돌아다니는거지 ㄷㄷ
-
기상 4
기상
-
개같은 연휴
-
화작확통생윤사문 최강담뇨단 된거가틈
-
@26letsgo 저도 헬스도함ㅋㅋ(따라쟁이아님) 진짜..진짜열심히할거임
-
예배할 때 0
웃참이 제일 힘들군
-
잘자요 3
ㅇ
-
@studywith_pham 참고로 헬스도 할거임 으히히
-
생1이랑 지1 해왔는데, 다들 과학2나 사탐으로 옮겨타는 것 같아서 질문남겨봐...
-
100퍼상태 충전을 하루 3번해야함
-
와 죽겠다 진짜 0
3시에 자서 제사지낸다고 7시에 일어났더니 죽겠다
-
오래쓴건가요? 이제 바꿀때가 됐나 싶어서요… 아이폰12입니당
-
체례상 3
요즘 물가가 많이 비싸진듯
-
남자 미필 삼수 1
어떻게 생각함 현역 평백 54>재수 84까진 올렸는데 아쉬움이 남네 학고나 이학기...
-
얼버기 0
4시간반정도 자니 하품ㅈㄴ해 나도 늙었나봐
-
지금 성대 공학계열이랑 한양대 산공, 경찰대 붙었는데 어느곳으로 가는게...
-
대깨설, 설의치수약은 투과목을 하는 게 가산점이 있으니 유리하다는 것은...
-
해야됨ㅁㅁ?
-
슬슬 자야 하는데... 20
암산테스트 신기록 세울때까진 못자...
-
누룽지닭죽 빈츠 어케 참음
-
언젠가 드디어 밤이 밝아오면 이젠 눈을 떠 줘, 봐 줘. 잠에서 덜 깬 모습의 너를...
-
이거 머임 0
ค็็็็็็็็็็็็็็็็็็็็็็็็็็็็็็็็็็็็็็็็็็็็็็...
-
덕코인 주면 덕담해줌 18
네
-
물2 ebs 0
현역 물2 ebs만으로 가능하다 보십니까 힘들어요 ㅠㅠ
-
하버드가서 미국 대통령 될빠에 붓산대 댕긴다 내같으면 아이고 가시나야 . . . 붓싼대가 최고지 마
-
잘 시간아에오
-
삼반수 0
2월이랑 학교 다니면서 공부 간간히 할 거고 5월 후반이나 6월 초부터 공부...
-
마 새끼 행님 마 제 기억나시죠 매형 마 내가 잘 될거라 했다 아임니까 마 아구...
-
제사 지내고 잔소리 듣고 낮잠 자고 외갓집 가기
-
그런 실화없나
-
얼버기.... 6
진짜 간만에 푹 잔듯..
-
얼버기 3
즐거운 설명절 보내세요~
-
경제적 여력때문에 대성,메가,이투스 같은 인강사이트는 못 들을 거 같습니다 개념은...
-
결국엔 일곱시군 1
...제사지내고 자야겟네
-
떡국 먹었음뇨 2
저 이제 74살임뇨
-
얼버기 1
-
만약에 100명이 2배수로 들어왔는데 99명은 다 aa나왔고 과탐가산점 없음 나만...
-
1황
-
자려 했는데 5판이나 했음뇨 어릴 때 주판으로 놀았던 게 도움이 되는 것 같기도..
-
나도 자러감 6
12시 전에는 일어날게 응
-
진짜잘게요 6
바이바이
-
유설, 장카로 나눠야 한다고 봄
-
워딩이 헷갈리잖아 인정하죠
너무 대충 써서 정리가 잘 안됨
x=f(t)에서 y좌표는 어떡하나요 그럼
... 뭐 그건... 알아서 잘 엮여 있겠죠
(f(t),g(t),t)를 만족하는...
근데 원이 ㅈ같으신가요
ㅋㅋ 아 그 ㅈ같음을 이해시키려 했다면 제 머릿속에 있던 사고과정에 쓰인 전제를 다 썼어야 했는데 그러질 못했네요.. 너무 대충 써서 ㅋㅋ...
저게 그거 잖아요 작년 6평 가나 지문 중에 (가)지문
? 아닌데요
맞음
‘날아가는 야구공은 물론이고 땅에 멈추어 있는 공도 시간은 흘러가고 있기에 시공간적 궤적을 그리고 있다.’
t는 시간이 아니라 변수입니다. 님은 수능 국어 공부하는 시간을 좀 줄여야할듯. 너무 많이 보셔서 그냥 사고가 그 내용쪽으로 굳어진게 아닌지... 기분 나쁘게 생각하지 마시고 진지하게 생각해보셔야 할 듯? 그리고 본인이 틀렸을 수 있다는 생각도 해보시고...
저 표현 자체가 R^3에서는 점으로 표현된 것이더라도 R^3 X T에선 점이 아닌 직선이 될 수도 있다는 걸 의미하는 건데 T가 시간의 집합이 아니므로 다른 것이다 ㅋㅋㅋ…
국어 공부 하루에 1시간밖에 안하니깐 걱정은 안하셔도 될 것 같습니다.
초딩이 등차수열 합 생각해내고 자신이 대단한 발견을 하였다고 우쭐해하는 모습을 보는 것 같아서 댓글 달았는데, 본인이 말씀하신 대로 국어를 못하셔서 그런지 이해를 잘 못하신 것 같아요.
수학 잘하시고 자부심도 나름 갖고 계신 거 같은데, 너무 거기에 도취되신 게 아닌가 싶습니다.
ㅋㅋㅋ 발악하는게 귀엽노
네 틀린 말이 없어서 더이상 반박 못하시겠다는 뜻으로 받아들일게요 극찬 감사합니다
어느 측면에서 아닌지 설명해주시면 생각해보겠습니다
데이터 분석같은거 할때 쓰지않나
특성을 잘드러내는 변수를 찾는 원리?
뭐라해야하지
음... 그냥 생각나는대로 쓴거라 ㅋㅋ..
실제 미분기하학에서 사용하는 방식과 유사하네요! 좋은 아이디어입니다.
와우.. 전문가분한테 칭찬 받으니까 기모찌하네요 ㄷㄷ...
말씀하신내용을 간단하게 요약해보자면 2D의 어떤 도형이 사실은 3D에서 정사형시킨 도형이다 라는 생각을 하신것 같아요. 이런 아이디어에서 3D 스캐너같은게 나올수있었다고 생각합니다. 더 많은 아이디어로 세상을 밝혀주세요
어려워서 안쓰는게 클듯
오 저랑 굉장히 유사한 생각을..