[미적 자작 문제] 무리수 e의 정의
게시글 주소: https://m.orbi.kr/00058891974
사실 이 문제는 '무리수 e의 정의'라는 이름을 붙이는 순간 풀이 과정이 뻔하기 때문에... 숨기는 것이 맞다만 그래도 문제에 이름은 붙여야하니 ㅜ 달았습니다. 어떤 변수 a에 대해 a가 0에 한없이 가까워질 때 (1+a)^(1/a) 꼴이 수렴하는 값을 e로 정의한다는 점을 공부했죠? 이를 단순화해서 바라보면 어떤 극한식에서 밑이 1로 가고 지수가 무한대로 발산하면 e와 관련되었을 것이라는 생각을 해볼 수 있습니다.
여담이지만 [e^x-e^(-x)]/2는 쌍곡선함수 중 한 종류로 sinh(x)로 표기하기도 합니다. 추가로 cosh(x)=[e^x+e^(-x)]/2이며 [sinh(x)]'=cosh(x)와 [cosh(x)]'=sinh(x)가 성립하는 등 삼각함수와 유사한 성질을 나타낸다는 점에서 표기에 sin, cos이 들어간다고 알고 있습니다.
추가로 한국 고등학교 교육과정에서 다루는 6가지 삼각함수의 풀네임은 sine, cosine, tangent, cosecant, secant, cotangent입니다!
+문제 아이디어는 작년에 논술 준비하며 봤던 어떤 문제로부터 얻었습니다! 다시 말해 온전히 제가 떠올린 것은 아니에요
[해설]
lim x->0인 상황에 대해 식 변형만 해볼게요! 핵심은 무리수 e의 정의를 활용하는 것과 초월함수의 극한을 활용하는 것입니다. 우선 '어떻게 무리수 e의 정의를 떠올리냐?'라는 질문에는 '지수함수 꼴 함수식에서 밑이 1로 수렴하고 지수가 무한대로 발산하는 것은 무리수 e를 정의할 때 사용하는 극한식과 같은 꼴이기 때문'이라는 답을 드릴 수 있습니다. 따라서 무리수 e의 정의식 (1+x)^(1/x)를 활용하기 위해 밑을 1+f(x) 꼴로 바라보고 지수에 1/f(x)꼴을 잡는 쪽으로 식을 변형해볼게요!
[x^3+9sin(2x)+[e^x+e^(-x)+2]/2]^[1/sin(2x)]
=[1+x^3+9sin(2x)+[e^x+e^(-x)]/2]^[[1/[x^3+9sin(2x)+[e^x+e^(-x)]/2]*[x^3+9sin(2x)+[e^x+e^(-x)]/2]/sin(2x)]]
이제 e로 수렴하는 꼴이 나왔으니 지수식을 정리해주면 되는데 삼각함수와 지수함수가 있으므로 sin(x)/x와 (e^x-1)/x 꼴을 띄울 생각을 해볼 수 있습니다, 우리는 초월함수의 극한을 학습한 상태니까요! (함수의 극한에서 lim를 분배할 때 핵심이 내가 아는 극한으로 극한식을 구성하듯 나타내는 것이죠? 수렴하는 걸 알아야 lim를 극한의 성질에 따라 분배할 수 있으니까요!) 따라서 지수의 식을 변형해봅시다.
[x^3+9sin(2x)+[e^x+e^(-x)]/2]/sin(2x)
=[x^2+9sin(2x)/x+[(e^x-1)/x-[e^(-x)-1]/x]/2]/[sin(2x)/x]
=[x^2+18sin(2x)/(2x)+[(e^x-1)/x+[e^(-x)-1]/(-x)]/2]/[2sin(2x)/(2x)]
이제 무리수 e의 정의와 초월함수의 극한을 활용하면 [1+x^3+9sin(2x)+[e^x+e^(-x)]/2]^[1/[x^3+9sin(2x)+[e^x+e^(-x)]/2] 부분은 e로 수렴하고 [x^2+18sin(2x)/(2x)+[(e^x-1)/x+[e^(-x)-1]/(-x)]/2]/[2sin(2x)/(2x)] 부분은 19/2로 수렴함을 알 수 있습니다.
따라서 극한값은 e^(19/2), 답은 e^(19/2)
타이핑 했더니 문자들이랑 괄호가 좀 복잡해보이긴 하는데 '무리수 e의 정의'와 '초월함수의 극한'이라는 아이디어만 잡으면 다들 어렵지 않게 값을 구해내실 수 있을 겁니다. 초월함수의 극한 연습하기 좋은 문제라고 생각해요, 물론 식 자체가 복잡해서 수능에는 나오기 힘든 모양이라 생각하고 나와도 논술에 나올 만하지 않나 싶네요 ㅋㅋㅋ
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
사람은 진짜 없는 느낌
-
지금부터 서로 죽여라?
-
뭐냐 에반게리온급이네 ㅅㅂ이
-
올해 150일 이상 4시간씩 탐구(생윤사문)에 박았는데 32떠서 좌절감을 맛보고...
-
창팝 밴드 커버 준비했는데 놀러와주시면 감사드리겠습니다 ㅋㅋㅋ 서울특별시 서대문구...
-
.
-
자이스토리 3
자이스토리 고3 수학 사려는데 수능 년도 바뀔 때 마다 문제 차이가 큰가요..?
-
왜 31만원이 21만원이 되었는지 설명해볼래
-
자니? 13
-
여성 인권운동가 아이민 1334714에 대해 araboza 4
우선 해당 아이민을 댓글을 기준으로 검색해보도록 하자 놀랍게도 여대,페미 관련...
-
경희대 논술 0
수리 논술인데 2-1에서 범위를 0<a<2/5까지라해서 틀리고 3-1에서 C값을...
-
수능은 끝났는데 3
왜 내 불면증은 안끝날까
-
내가 생각보다 잘하는거구나라는 생각이듦
-
잠을 못자 ㅅㅂ
-
강기원 김현우 장재원 박종민 안가람 이동준 ㅅㅂ 커뮤니티에서 후기들 알아보고있긴한데...
-
어그로 ㅈㅅ 87 74 2 93 93 동국대 철학괴 ㄱㄴ?
-
투과목잘알님들아 3
지2어떰?? 생2처럼 운이 크게작용함? 아님 정직하게실력만큼나옴?
-
얘네 지금 볼 필요 없음 그냥 놀아요
-
진학사? 2
다들 진학사 결제 하셨나요…? 아니면 다른 거 쓰시나용 요즘 걱정돼서 잠이 안 옴 ㅎ….
-
전날까지도 자꾸 실모에서 개념문제 하나씩 나가길래 수능날 실수하면 죽겠다는 마인드로...
-
오르비 땅따먹기 6
특정 검색어 도배 미코토 검색하면 내 글이 50퍼가 넘는다 흐흐흐
-
심심한데 0
뭐 질문해줘요
-
과탐과목 2
물원생투했는데 바꿀까요 그대로갈까요
-
걍 닉네임 안뜨면 안됨뇨? 왜케 거슬리지
-
서강대교 성수대교 한강대교
-
마렵네 :)
-
질병분류체계에 정신병으로 한국페미 집어넣어야한다 반사회적 인격장애와 경계선지능장애가...
-
똥줄타실것같음
-
이과고 연대 활우 성대 과학인재 중대 탐구형인재 썼는데 연대만 1차 붙어서 면접...
-
글 리젠이 없네 0
흑흑
-
미코토 이쁨 3
-
마히루 이쁨 1
-
타이탄 이쁨 4
-
걍 구라일 확률이 매우 높음뇨 커뮤에 치대 떡락한다 의대는 신이다 도배하고 다니던...
-
루비 예쁨! 7
-
종강언제함 5
ㄹㅇ
-
현기증인가 4
물에 한시간정도 들가 있었더니 살짝 어지러움
-
엄청 불안하네 갑자기 영어 1 아니면 다 망하는건데
-
제가 고1 때 자퇴해서 고2 때 첫 수능 보고 고3 (올해) 재수인데 사실 내년에...
-
성심당 애니플러스 애니세카이
-
부시맨 브레드 나오면 소스 한개만 나오니까 나머지 두 종류도 꼭 같이 달라고 하셈요...
-
팩트는 ㅄ이 맞다는거임 10
언냐 뭘 부정하고 있어
-
어떻게 대해야할지 잘 모르겠음.. 특히 그 사람과 다른 사람들 같이 있을때 스스로...
-
컴공 생각하고 있었는데 점점 ai발전하고 이미 기술자들 많은거 같은데 지금이라도...
-
안녕하세요. 처음으로 글 써봅니다. 일단 전 광역시중 하나에 거주하는 남학생입니다....
-
어케한거냐면 진짜 말그대로 하루종일 아무것도 안먹음 아이스아메리카노나 제로 음료는...
-
이게오르비지 ㅋㅋ
-
나랑 키배 잘뜨다가 어디갓어
고급수학러지만 행렬, 극좌표밖에 안 배웠습니다,,
그것은 고수1 고수2해서 해요 쌍곡함수는
고급수학 2도 있나요? 그건 몰랐네요 ㅋㅋㅋ
재미있네요! ^^ 혹시 답은 e^10 인가요? ~~
저는 e^(19/2)가 나왔던 것 같은데,, 다시 확인해보겠습니다!
끄악 죄송해요! 2분의 를 계산하는 걸 깜빡했어요! ㅠㅠ
앗 그럼 옳은 풀이 같네요 ㅋㅋㅋㅋ
다른분들도 풀어보실 수 있게 최대한 숨겨서 여쭤볼게용...
(e) ^ (0 + 9 + 1/2 - (-1/2))로 푸는 것 맞는지요?
네, 그 방식 맞습니다! e의 정의를 활용하기 위해 지수에 어떤 작업을 해주어야 하는지, 미적분에서 다루는 '초월함수의 극한'을 다루기 위해 지수에 만들어질 분수식의 분모 분자에 어떤 작업을 해주어야 하는지를 알아내어 적용하는 것이 출제 의도였습니다
좋은 문제 주셔서 감사합니다 선생님! ^_^
풀어주셔서 감사합니다!
그냥 로피탈 하니까 e^19/2나오긴하는데..대학가서 미분적분학 배웠더니 e정의를 까먹었어요...
e = lim x->0 (1+x)^(1/x)
= lim f(x)->0 [1+f(x)]^[1/f(x)]
아하 식변형 좀 하면 나오긴 하겠네요
교과서적 풀이가 중요한 문제라고 생각해서 오늘이나 내일 중 해설 남겨두겠습니다!