[칼럼]현직 출제자가 말하는 수학문제가 만들어지는 과정
게시글 주소: https://m.orbi.kr/00061171298
안녕하세요. 방구석출제자입니다. 칼럼을 써보고 싶었어요!
많은 분들이 [수학문제가 만들어지는 과정]을 궁금해 하시더라구요! (수험생한텐 필요없...)
출제자 분들마다 다르겠지만 제가 여기저기서 듣고 배운, 혹은 제가 사용하는 방법들에 대해서 설명해볼게요!
이 칼럼을 읽고 나면 수학문제를 어떤 시선으로 봐야할지에 대한 나름의 기준이 잡히지 않을까 생각합니당
1. 단원을 나눈다.
고등과정의 수학엔 여러가지 단원들이 있습니다. 크게는 수1, 수2, 미적, 기하, 확통 이 있을것이고 각 단원별로 세부적
인 소단원들이 있겠죠. 이러한 단원을 구분하는 것은 문제를 출제할 때 굉장히 중요합니다. 여러 단원에서 적절한 빈도
출제해야하는 것은 물론 [단원]별로 학습목표나 추구해야하는 방향이 다르기 때문이죠.
학생들도 수학을 그냥 따라가며 배우기 보단 전체적인 큰 틀인 [단원]을 생각하면서 문제를 풀면 좋겠어요!
'이 문제는 어떤 단원을이지?', '이 단원에서 중요하게 다뤄지는것은 어떤 개념이지?' 를 생각하며
문제를 푼다면 좀 더 넓고 정확한 시각으로 문제를 볼 수 있겠네요.
2. 소재를 생각한다.
소재라는 것은 다시 말하면 [내가 학생들에게 전달해주고 싶은 것] 입니다.
수2 문제를 만들 때는 [삼차함수의 점대칭적 특징] 이라던가 [이차함수에서 접선의 기울기가 가지는 특징] 처럼 수2를
배우면서 알아야 할 것들을 소재로 생각하는거죠. 내가 만든 문제를 풀면서 학생들이 이러한 [소재를 학습] 하길 바라
는 겁니다.
물론 평가원이나 모의고사는 [학습]이 아닌 [평가]의 목적을 가지고 있지만 어쨋든 [소재]를 평가하는 거자나용
미리 학습해 놓는다면 평가가 목적인 시험에서 걸러지지 않을 수 있습니다.
3. 조건을 생각한다.
소재에서 조건이 나옵니다. 하지만 한 소재에 하나의 조건만이 가능한 것은 아닙니다.
예를 들어
[삼차함수가 변곡점에 대하여 대칭이다]이라는 소재에서 조건을 주고 싶으면
' 함수 f(x)가 점 A에 대하여 대칭이다' 처럼 직관적으로 줄 수도 있고
'f (x)+f (4-x)=4' 라는 식을 주면 함수 f (x)가 점 (2, 2)에 점대칭이 되죠.
이거 외에도 한 소재에 엄청나게 많은 조건들을 쓸 수 있습니다.
그렇다면 학생은 어떻게 해야 할까요.
학생은 조건->소재를 파악해야합니다. 역방향으로 생각해야하는 것이죠. 항상 사고를 역방향으로 하는것은
어렵습니다. 그래서 수학 문제가 어려워지는건데요!
이를 수월하게 하기 위해선
1. [소재]부터 확실하게 배운다 (우리가 흔히 말하는 [개념학습]입니다.) 애초에 [소재]를 모르면
조건을 아무리 읽어도 [소재]를 유추할 수 없습니다.
2. [조건]에 익숙해진다(이미 본 [조건]들은 복습하고 새로운 [조건]은 학습하는거죠
(수능은 비슷한 조건들이 계속 나오기 때문에 조건에 익숙해 지는 것이 중요합니다)
3. 새로운 [조건]이 나오면 어떤 [소재]일지 유추한다.
흔히 말하는 킬러를 푸는 방법입니다. 킬러같은 경우는 익숙한 조건이 잘 등장하지 않습니다.
하지만 [소재]를 명확히 알고 여러 [조건]들에 익숙해진 상태라면 새로운 [조건]도 소재랑 연관지을 수 있습니다.
4. [조건]을 변형한다
여러분이 새롭다고 느끼는 [조건]들은 사실 이미 나온 [조건]들을 변형한것이 대부분입니다.
식변형을 하거나, 기존의 상수를 변수로 주고, 반대로 변수였던것을 상수로 바꾼 다던가.
원래는 상수 3으로 줬던걸 함수로 바꾼다던가... 여러가지가 있죠.
예시)
~~값이 자연수가 되는 x의 개수가 7이다 >>>>>>~~값이 자연수가 되는 x의 개수를 f(n)이라 할때....
요런 식입니다.
학생여러분은 변형되는 조건들을 파악하는 능력을 기르길 추천드립니다. 위에 서술한 내용과 마찬가지로
[조건]들을 많이 보고 익혀야 합니다.
오늘도 새벽에 문제만들다 힘들어서 오르비 들어와 봤는데 나름 재밌네요 ㅎㅎ
누군가에겐 이런 칼럼이 도움이 되었으면 좋겠습니당. 다음 칼럼 소재 추천해주세용~
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
이제 본과1학년 인거같던데 과외 해주실수 있으려나… 정시로 인서울 빅5 의대...
-
진짜 이제 겨울인가봐...
-
개국한지 벌써 11일
-
인생 망한 거 같고 수능을 못봐서 인생이 망할 거 같고 수능을 잘봐도 행복할 거...
-
밤새 비왔나 0
땅이 축축하네
-
그냥 와랄랄랄랄랄라
-
ㅠㅠ
-
whw기련아진짜 0
화염포 마렵네
-
ㅈㄴ 신기함 오르비에 은근 많더라
-
국어 노베인데 1
서점 가서 국정원 독서 문학 사려는데 국정원 독서 문학 책 사도 괜찮음?
-
처음으로 차단함 수능 전에 굳이 키배 뜨면서 시간낭비 하기 싫음 생각할수록 짜증나게 하네 ㅋㅋㅋㅋ
-
ㄹㅇ 엄청 후련하고 도파민 폭발함 ㅋㅋㅋㅋ
-
이제서야 느껴 우리 공간
-
2022 시발점 찍으면서 강의 및 교재에 개선된 부분이 있으면 편집해서 2015...
-
방금 최소 10마리는 잡음.. 아니 나 이 좁은 자취방에서 대체 몇 마리와 동거 중인 거임
-
에휴
-
난이도대결 1
ㅈㄱㄴ
-
실모 난이도가 어렵든 쉽든 항상 80~88점대가 나오네 벗어날수가 없다...
-
올해 메디컬최저 1
사탐런이 가능한 학교들은 전부 올라가겠죠? 근데 건수나 동약같은경우에는 걍 경쟁률이...
-
타지에서 시험쳐야되서 부득이하게 전날 모텔갈거 같은데 전날+아침에 공부할거 가져가면...
-
깔아줄게.
-
어떻하나요
-
수능에서 중요하나요? 1순위로 외워야 되나요?
-
확통 기출강의 0
ㅊㅊ해주세요 대성으로요
-
이게 뭐야 오늘도 평화로운 오르비 오늘은 지인선 모의고사를 풀어줄 건데요 시간...
-
지구과학 앞부분 잊어버려서 복습할겸 전체단원 한번더 푸려고하는데 뭘 추천하시나용...
-
먼가 붕뜨는 느낌인데 미적에서는 더 많이 나오나요? 흠
-
방정식과 부등식 theme13 2번째강의임 무려 현강시절 윽건이를 볼 수 있음
-
주어진 시간이 끝나기 전에는 절대 먼저 포기하면 안 된다는 것인듯… 스스로에게 해주고 싶은 말이네요
-
병신같은 교수가 진도 다 못 빼서 이번주에 보는데 ㄹㅇ ㅈ같다 진짜 그냥 2학점...
-
그냥 병신인거 같다. 열품타 올해꺼만 2200시간 찍혀있는데 잘못 측정한거 다...
-
이거 유튜브댓글 많이보이던데 밈임?
-
왜 잠이 안오냐 0
ㅅㅂ
-
주말 전투휴무 제외임
-
61분 89점 비문학 -5 문학 -4 화작 -2 비문학 실리콘 지문에서 5점 나감...
-
스토리 올리는 사람도 몇 명 없네
-
딱 이거만 다 하고 들어가야지..
-
지가뭔데 지한테 존댓말로 꼬박꼬박 부탁을하라고 요구를하지 반말로 하는게 훨씬 편한데...
-
작년 3덮인가 4덮에 나왔었던 거랑 비슷한 문제인 것 같은데 저렇게 인테그럴...
-
화요일부턴 7시반~8시 사이엔 일어나야 되는데 ㅈ됐네
-
독서 기출 지문 다시 읽으려 하는데 제가 예전에 분석하면서 필기해놨던 교재 읽으면서...
-
아 이제 잔다 0
갑자기 이어폰이 한쪽이 작동이 안돼서 기다리고있었는데 안되겠어 닉네임은 바꿨습니닼
-
다시풀으면서 피드백할거 추천받아요
-
여르비한테 쪽지 받음?
-
가능할까요…?ㅠㅠ 하루에 3~4번씩은 들을려고 하는데 지금은 3~4개 틀리는거 같아요
-
할건해야지..
-
6모보다 극혐인 점수는 처음이네;;
오 만들어보고싶어요