RC - [수학Ⅱ] 삼차함수 네모박스 _ < 01 다항함수의 도출 및 함수의 이해 (2/3) >
게시글 주소: https://m.orbi.kr/00061810441
[목차]
1. 다항함수의 도출
2. 다항함수의 도출을 위한 정보
(1) 다항함수 f(x)의 인수가 주어진 경우
① 다항함수 f(x)에 대하여 f(a)=0인 경우
② 다항함수 f(x)에 대하여 f(a)=0, f’(a)=0인 경우
③ 다항함수 f(x)에 대하여 인수 (x-a)의 개수
(2) 다항함수 f(x)의 주어진 정보가 직선 위에 있는 경우
① 다항함수 f(x)의 주어진 정보가 상수함수 y=k 위에 있는 경우
② 다항함수 f(x)의 주어진 정보가 일차함수 y=px+q 위에 있는 경우
3. 다항함수의 이해: 다항함수의 함숫값
(1) 함수 f(x)의 개별 근에 대한 정보가 주어졌을 경우
① 개별 근에 대한 정보가 y=k 위에서 주어졌을 경우
② 개별 근에 대한 정보가 y=bx+c 위에서 주어졌을 경우
(2) 함수 f(x)의 n중근에 대한 정보가 주어졌을 경우
① n중근에 대한 정보가 y=k 위에서 주어졌을 경우
② n중근에 대한 정보가 y=bx+c 위에서 주어졌을 경우
------------------------------------------------------------------------
[이전 칼럼]
RC - [수학Ⅱ] 삼차함수 네모박스 < 00 INTRO (+ 자기소개) >
RC - [수학Ⅱ] 삼차함수 네모박스 < 01 다항함수의 도출 및 함수의 이해 (1/3) >
------------------------------------------------------------------------
※ 수학Ⅱ 문제는 함수의 모양을 정확히 파악하는 것이 중요합니다.
머릿속에 그래프를 그려낼 수 있을 만큼 그래프 개념에 숙달되신 분이 아니라면,
반드시, 옆에 노트 등을 두고 그래프를 그리며 내용을 따라오십시오.
권장사항이 아니라, 필수사항입니다.
------------------------------------------------------------------------
이전 칼럼
[수학Ⅱ칼럼] 삼차함수 네모박스 _ < 01 다항함수의 도출 및 함수의 이해 (1/3) >
에서 이어집니다
(2) 다항함수 f(x)의 주어진 정보가 직선 위에 있는 경우
① 다항함수 f(x)의 주어진 정보가 상수함수 y=k 위에 있는 경우
수능 문제가 매우 친절하게 다항함수 f(x)의 근에 대한 정보를 직접적으로 제공할 수도 있지만,
그렇지 않고 근에 대한 정보를 간접적으로 제공할 수도 있습니다.
그 방법 중 하나가 근에 대한 정보,
즉 다항함수 f(x)에 대해 x축(y=0) 위의 정보를 주는 대신
상수함수 y=k 위의 정보를 주는 것입니다.
이때, 우리는 (1)-①에서와 유사한 방법으로 정보를 정리할 수 있습니다.
예를 들어, 삼차함수 f(x)에 대해 f(3)=3이라는 정보가 주어져 있을 경우,
f(x) = ax³+bx²+cx+d , 27a+9b+3c+d = 3
으로 정리하는 대신
f(x) = (x-3)(px²+qx+r)+3
와 같이 나머지 정보를 정리할 수 있다는 것이지요.
해당 개념을 활용해 예제 하나를 풀어 봅시다.
아주 기본적인 정보 나열을 통해 해당 문제를 푸는 방법은
삼차함수 f(x) = ax³+bx²+cx+d 에 대해
f(0) = -3 이므로 d = -3
f(1) = 3 이므로 a+b+c+d = 3, a+b+c = 6,
f(2) = 3 이므로 8a+4b+2c+d = 3, 8a+4b+2c = 6, 4a+2b+c = 3
f(3) = 3 이므로 27a+9b+3c+d = 3, 27a+9b+3c = 6, 9a+3b+c = 2,
이므로
두 번째 식과 세 번째 식에서 (4a+2b+c)-(a+b+c) = 3a+b = -3
두 번째 식과 네 번째 식에서 (9a+3b+c)-(a+b+c) = 8a+2b = -4, 4a+b = -2,
(4a+b)-(3a+b) = a = (-2)-(-3) = 1
3a+b = b+3 = -3, b = -6
a+b+c = c+1-6 = c-5 = 6, c=11
f(x) = x³-6x²+11x-3 , f’(x) = 3x²-12x+11,
f’(4) = 48-48+11 = 11 (Q.E.D.)
와 같습니다.
그런데, f(1) = f(2) = f(3) = 3 이라는 정보를 단순한 정보가 아니라
f(x)의 근에 대한 간접정보로 이해하게 된다면 풀이가 확 달라지게 됩니다.
g(x)=3 , h(x)=f(x)-g(x) 로 새로운 함수를 정의해 봅시다.
그러면 다음 정보를 활용했을 때
h(1) = f(1)-g(1) = 3-3 = 0
h(2) = f(2)-g(2) = 3-3 = 0
h(3) = f(3)-g(3) = 3-3 = 0
가 되므로, 해당 함수 h(x)에 대해
h(x) = f(x)-g(x) = f(x)-3 = a(x-1)(x-2)(x-3) 으로 정리할 수 있고,
이를 다시 f(x)에 대해 정리하면
f(x) = a(x-1)(x-2)(x-3) +3 으로 정리할 수 있습니다.
이렇게 정리하고 나면 위의 풀이가 다음과 같이 달라지죠.
f(0) = a×(-1)×(-2)×(-3)+3 = 3-6a = -3, a=1
f(x) = (x-1)(x-2)(x-3)+3, f’(x) = (x-2)(x-3)+(x-1)(x-3)+(x-1)(x-2)
f’(4) = 2×1+3×1+3×2 = 11 (Q.E.D.)
위의 문제는 애초에 그렇게 어려운 문제가 아니기 때문에
굳이 문제를 이렇게 풀어야 하는지에 대한 의문이 있을 수도 있겠지만,
이러한 정보를 활용하는 방법은 후반에 삼차, 사차함수 고난도 문제를 풀 때 빛을 발합니다.
‘극댓값 또는 극솟값’에 대한 정보가 나왔을 때 이를 유용하게 사용할 수 있죠.
예를 들면,
“최고차항의 계수가 1인 삼차함수 f(x)가 x=3에서 극솟값 4를 갖는다”
와 같은 발문이 있을 경우,
해당 개념을 완벽히 숙지하고 있고 활용이 가능한 상태일 경우
해당 함수를 바로
f(x) = (x-3)²(x-k)+4, (k<3)
과 같은 방식으로 정리할 수 있는 것입니다.
(자세한 설명을 일부러 적지 않을 테니, 한번 머리를 굴려서 시도해 보시기 바랍니다.)
② 다항함수 f(x)의 주어진 정보가 일차함수 y=px+q 위에 있는 경우
x축과 평행한, 즉 기울기가 0인 직선인 상수함수 y=k 위의 정보뿐 아니라
기울기가 0이 아닌 직선인 일차함수 y=px+q 위에 대한 정보가 주어졌을 경우에도
위와 같은 방식을 활용할 수 있습니다.
특히 함수의 접선과 관련된 문제가 나왔을 경우 해당 개념을 유용하게 활용할 수 있죠.
y=f(x)의 x=a에서의 접선 y=g(x)는 by definition,
f(a)=g(a)이고 f’(a)=g’(a)인 직선입니다.
( 접선의 방정식: y = f’(a)(x-a)+f(a) )
따라서 새로운 함수 h(x) = f(x)-g(x) 를 정의한다면 h(x)는
h(a) = f(a)-g(a) = 0, h’(a) = f’(a)-g’(a) = 0 이라는 특징을 자동으로 만족하게 되지요.
바로 예제를 풀어 봅시다.
최고차항의 계수가 1인 삼차함수 f(x)의 x=2에서의 접선 g(x)는
점 (-1, 1)과 점 (2, 4)를 지나네요.
x증가량이 3, y증가량이 3이므로 직선의 기울기는 1, y절편은 2입니다.
즉, g(x) = x+2 이다.
또한, f(x)와 g(x)의 그래프가 x=2에서 접하고 x=-1에서 만나므로
h(x) = f(x)-g(x) 에 대하여 h(x)는 최고차항의 계수가 1인 삼차함수이고
h(2) = 0, h’(2) = 0, h(-1) = 0 입니다.
따라서 h(x) = f(x)-(x+2) = (x-2)²(x+1) 이고,
f(x) = (x-2)²(x+1)+(x+2), h(0) = (-2)²×1+2 = 6 (Q.E.D.)
이 되겠습니다.
위 내용은 정말
매우매우매우매우매우매우매우매우매우매우 중요하니
꼭 제대로 숙지하실 필요가 있겠습니다.
지금 보기에는 그렇게 어려운 개념이 아닌 것처럼 보일 수도 있고
많은 분들이 이미 어렴풋이 알고 있었던 내용이기도 하겠지만,
해당 개념 및 풀이 방식을 완벽히 이해하고 활용할 수 있을 때
추후 등장할 삼차함수 및 사차함수의 고난도 문제에 효과적으로 접근할 수 있습니다.
만약 수능 수학 고득점을 목표로 하시는 분이시라면,
반드시 해당 내용을 정독하며 복습하고,
다양한 접선 문제들에 적용하여 풀어보시기를 바랍니다.
------------------------------------------------------------------------
RC - [수학Ⅱ] 삼차함수 네모박스 < 01 다항함수의 도출 및 함수의 이해 >
칼럼은 중요한 내용이 너무 많고 전달해야 할 정보도 많아
가독성 및 여러분들의 지구력을 위해
총 3개의 게시물로 작성될 예정입니다.
해당 내용은 단순히 삼차함수 관련 문제를 풀 때뿐만 아니라
모든 수학Ⅱ 문제를 관통하는, 수학Ⅱ 이해의 뿌리가 되는 내용이니만큼
해당 내용을 눈 감고도 머릿속으로 떠올릴 수 있을 만큼
철저히 숙지해두시기를 바랍니다.
댓글과 좋아요 등으로 많은 분들이 유익한 글 볼 수 있도록 도와주시면
글을 작성하는 저에게도, 수능을 함께 준비하는 동지들에게도 큰 힘이 됩니다.
위 내용에 대한 질문이 있으시다면,
사진 등으로 질문 및 피드백이 불가능한 쪽지보다는
제 프로필에 있는 오픈채팅 링크로 들어와 주시면 감사하겠습니다.
다음 칼럼의 주제는
RC - [수학Ⅱ] 삼차함수 네모박스 < 01 다항함수의 도출 및 함수의 이해 (3/3) >
(링크)
입니다.
빠른 시일 내에 돌아오도록 하겠습니다.
감사합니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
상향카드 경쟁률이 너무 높거나 너무 낮으면 피하는거 맞죠? 어느정도 마감 직전...
-
n수분들은 어떻게 하셨나요 너무 고민됨..
-
6칸 5칸은 걍 오늘 하고.. 5칸짜리도 그저께까지 6칸이다가 하나 떨어진거라 둘다...
-
[속보] 최상목 권한대행 "헌법재판관, 임명 결정" 1
[속보] 최상목 권한대행 "헌법재판관, 임명 결정"
-
1.글캠 차별 심한가요 2. Financial & ai학부 가려는데 금융수학...
-
대전 물가 저렴함 인스타 맛집 아니면 인당 9천원 내로 어지간하면 해결가능 성심당 가까움
-
4칸됐누ㅠ
-
잘 잤다 0
그러하다
-
ㅈㄱㄴ….
-
공개하라 공개하라
-
문제는 그 펑크가 어딘지 모르겠다는것임
-
중앙대 기준으로 0
수학과 -> 컴공 전과가 쉬울까요 경제학부 -> 컴공 전과가 쉬울까요...?
-
난 핵빵난 설의 99퍼 쓸거임
-
아무리 재수결심한 현역이라도 2~3칸 스나만 지르네
-
걍 질러도 됨? 0
4~5칸 왔다갔다인데 갑자기 2칸됨... 컷이 걍 정상화된 건가.
-
중학교 2-1 수학 과외를 지인소개로 어쩌다보니 하게 되었는데 과외가 처음이다 보니...
-
작년에 서강인문 성대경영을 경험해봐서 좀.. 떨려요
-
질문! 0
내일 기숙학원 들어가는데 보통 공부할거리 얼마나 들고 가나요??
-
더럽게 비싸기만함 ㅋㅋ 어차피 둘다 사봤자 결국 진학사보고 쓰고 그냥 3점 더...
-
2024 요약 5
연애빼고다함
-
.
-
전자기기에 관심 1도 없어서 그냥 돌아가기만 하면 됨 휴대폰도 홈버튼 있는...
-
맞팔하실분 14
ㄱㄱ헛
-
두가지 선택지 중 고민 중입니다. 건대를 간다면 기계과로 전과 생각중이구요. 제가...
-
Send a selfie too
-
텔_ 살 돈으로 0
핫치즈빅싸이순살을 5번 사먹을걸 그치만 안샀으면 불안해서 사망햇을듯
-
컨설팅피셜 100퍼센트 진학사8칸 휴
-
사탐런들이 쉽게 못넣울만한 자연계 대학 어디있을까요.. 과탐 못봐서 그냥 촤대한...
-
대성형아.....설날까지만 연장해줘 욕해서 미안해 내가 4년동안 썼는데 좀 봐줘라
-
다른사람들은 알 수가 없는거죠??
-
지난번 전화상담했을때 오늘 점심쯤 2차상담해준다고 해놓고 아직도 전화 없는데 먼저 걸어도 되나요
-
정상화된 커트+칸수로 옮겨가는사람들 많을거같음
-
겨울방학 때 알바한 걸로 걍 동네 스카 다니려 하는데 현실적으로 스카재수가...
-
어제만해도 상위표본 2등부터 7등까지 전부다 높공에서 신규 유입이였다네요 다들 컷...
-
자연계열 눈치싸움 미치겠네
-
수학이 개개개폭망이라 연대를 쓰지 못한다
-
궁금해요
-
엉엉
-
전남의는 1시간~1시간 반 충남의는 2시간~2시간반인데 집은 호남쪽임
-
성대 경영 9
너무불안한데
-
다녀야함?
-
45²년이라니 2
2025년도는 가상의 세계같아
-
알바하는데 0
패스트푸드점 주말임 점주님이 자주 오시는데 원래 쿠사리 많이 넣나요? 키오스크...
-
레전드 돈낭비
-
내년이면 8살이네요 13
이제 초등학교 입학할 생각하니 설레는군요
-
다군 에휴 ㅅㅂ
-
ㅈ도 쓸모없어
-
국어-이원준 CC+김상훈 문학론+ 강민철 언매(언매 뭐할지 아직 모르겠음) 기출...
-
음~
첫번째 댓글의 주인공이 되어보세요.