마지막 칼럼들 : 익명으로 올렸던 칼럼
게시글 주소: https://m.orbi.kr/00062817802
저쪽 갤러리에 올린 칼럼들을 다 내릴까... 고민하다가, 하나는 안 알리고 싶은 스킬이라 내리고, 나머지는 팩트의 정리라 냅두기로 하고 걍 마지막 칼럼으로 올립니다.
1. 미지수가 적어야 좋을까
선 결론 : 가끔 미지수 1개정도 적는게 훨씬 빠르다.
또는, “어떻게 소거될지 알고 있다면” 그냥 미지수를 쓰는게 더 빠르다.
당연히 모든 문제에 대해, 내분, 가중치내분, 기타 비율 이용 미지수 0개 풀이 다 해보고 내린 결론이다.
일단 미지수가 줄어들수록 “순수 풀이 속도”가 감소하는건 동의한다고 가정하자.
물론 특수용례로 작년 수능 20번같이 내분상황이 오히려 복잡한 경우(뒤집어서 해야하고.. 통분도 해야하고..) 미지수 0개보다 1~2개가 계산마저 더 느리긴 한데, 이런 상황은 일단 제외하자. 애초에 이거 내분 왜함
아무튼 미지수가 줄어들수록 순수 풀이속도가 줄어들텐데, 그러면 줄이는게 좋은가?
아니다. 미지수를 줄인다는 것 자체가 “방정식의 소거“를 머릿속에서 미리 하는것이기 때문에 다소 생각시간이 필요하다.
따라서 미지수를 줄일수록 “생각시간”이 늘어난다.
결론적으로 미지수를 줄이면 총 풀이시간이 늘어날수도 줄어들수도 있다는거고, 그 최저점은 사람마다 다르겠으나 내가 학생들 과외하면서 연구한 결과 보통 미지수 1개로 놓고 풀 때가 최저점이다.
미지수 0개 풀이가 보자마자 보이는 사람들이면 논외다. 사실 나도 어지간하면 미지수 없이 푼다. 근데 이런 사람들은 보통 장수생/컨텐츠 제작자/현역의대생 밖에 없다. 그리고 굳이 이렇게까지 빨리 풀 필요도 없고.
+)여담
본인이 듣는 강사가 미지수를 매우 적게 사용하거나 안 쓴다면, 그 풀이를 최종지향점으로 삼는건 괜찮으나 막판 산수에까지 미지수를 안 쓰는 경우 못 따라하겠다면 그냥 이해만 하고 넘어가도 된다. 당장 따라할 필요갸ㅏ 없다.
애초에 강사의 강의를 들으면서 생각해야할 마음가짐은 “와 개쩐다 다 따라해야지”가 아니라 “얻어갈거 있나 함 보자”가 더 옳다.
2. 미지수 잡는게 더 빠른 문제의 예시들
처음에 b=a정도 구하는건 미지수를 잡았다고 하기도 애매하니 패스.
미지수를 하나도 안 쓰고 푸는게 가능하다. 즉 x에대한 식을 구할필요 없이 단순 비례식으로 풀 수 있음. 힌트는 (나)를 H2B + NaOH용액을 기준으로 묽힌 용액이라고 생각하면 된다.
근데 이 생각이 빠를까 x잡고 산수때리는게 빠를까?
반응전 A와 B의 몰수를 계수 a로 표현, 반응 후 C 몰수를 계수 c로 표현하면서 상댓값 잡고 풀면 더 직관적이고 빠르다. 즉 미지수 2개를 쓴다.
추가적으로 실험 1에 곱하기 2 하면 존나쉽다.
물론 반응전 A와 B 몰수를 x, y 이따구로 잡으면 풀이 터진다.
가중치 내분으로는 미지수 0개
선형성으로 미지수 1개
일반풀이로 미지수 2개
가중치 내분 말고는 풀이속도의 차이가 없다.
선형성과 일반풀이, 솔직히 속도 차이 안난다.
가중치 내분은 이 문제 나오기 전엔 없던 스킬이니깐 엄밀히는 뒷북풀이라 논외이다.
3. 이온표 논쟁 정리하면
비 첨가형 유형에선 이온표가 “일반적인 실력인 경우” 더 빠름
이온표 안 쓰는 풀이에 매우 숙달되면 비 첨가형 유형에서도 이온표보다 빠름
첨가형 유형에선 이온표가 대부분의 경우 느림. 문제 상황에 따라 시간차이가 클수도, 작을수도 있고 이온표 그리는 실력에 따라도 갈림
이온표 자체의 근본적 한계는, 대부분의 경우 문제풀이에 쓸모없는 알짜 이온 개수까지 다 적는거때문에 시간이 끌리는거인데
비 첨가형 유형은 해봤자 용액 3개주는거라 큰 문제가 안되고, 오히려 능지 굴리다가 시간 끌림
첨가형은 용액 4개나 그 이상도 주고, 첨가형 문항의 기본 베이스인 선형성이 잘 보이지 않게 되는 이온표가 손해인거
이온표가 확실히 불리한 평가원 문제는 아래가 있다
나머지 평가원 문제는 대부분 큰 유불리가 없다
물론 애초에 이거 이온표로 해설하는 사람 없을정도로 너무 명백한 예시인데..
2206 중화도 연속성이 명백해서 이온표가 불리한 사례중 하나다.
4. 21학년도 7월 학평 20번(중화)
사실 ㄱ, ㄴ 귀류법 때려도 쉽게 풀리지만 생각을 하면서 해보자
+) 그래프에 보이는 첨점으로 푸는 풀이는 패스한다.
++) 과조건 존나많다.
1. 용액 1은 염기, 용액 2는 산성이다. 1~2 사이에서 넣고 있는 산의 음이온 개수는 증가해야 하고, 넣지 않고 있는 산의 음이온 개수는 일정해야한다. 따라서 용액 2를 2:2로 두면 상댓값이 일치한다. 이걸 걍 개수로 두자.
2. 용액 1과 용액 2의 음이온 수 합이 4로 같다. 하지만, 현재 첨가하는 상황이고, 용액 1~2 사이에서 액성이 바뀌었으므로 “전하량 합”은 증가해야 한다. 따라서, 평균 전하량이 증가했다. 즉, 넣고 있던 산은 2가이다. 따라서 ㄱ은 HA, ㄴ은 H2B이다.
(따라서, 용액 1 1:1:2에서, 비율 2에 해당하는게 A-이다. 실제 시험장이라면 이제 문제에 이온을 표기해야한다)
3. 용액 1의 전하량 합은 5, 용액 2의 전하량 합은 6이다. 양이온은 1가 이온 뿐이므로 전하량은 양이온 개수와 같다.
따라서 용액 1의 모든 이온 개수는 9, 용액 2는 10이다.
이온 수 비 9:10인데 몰농도 비 9:8이므로 부피비는 4:5이다.
따라서 V=20이다. (ㄱ X)
4. 5mL 첨가 지점의 모든 이온 개수는 10이다.
설명 : 단순 첨가 상황이므로, 용액 1과 양/음이온 전하량은 같다(둘 다 중화점 이전이므로). 근데 5mL지점이면 아직 2가가 들어오지 않은 상황이다. 따라서 전체 이온 개수는 전하량이 5이므로, 5*2 = 10이다.
5. 용액 2도 이온 개수가 10이므로 용액 2와 비교하면 기분 좋을 것 같다.
5mL 첨가 지점 부피는 25, 용액2 부피는 50이고 이온 개수가 같으므로 몰 농도 합 비는 2:1이다. 따라서 m=16 (ㄷ O)
6. 부피 비 HA:H2B = 1:2로 넣은게 용액 2인데 A-, B2- 개수가 같다. 따라서 몰 농도비는 부피비의 반대인 2:1. x:y=2:1(ㄴ O)
답 4(ㄴ, ㄷ)
설명을 많이 했는데, 님들이랑 나랑 약속이 안 되어있어서 그럼. 님들이랑 나랑 용어적으로 약속을 했으면 풀이는 짧음
5. 제일 빠른 231120 초반부 풀이 및 잡기술
대충 개념은 “공통항의 소거”라고 생각해두던 택틱이고
원래 양적관계에서 반응 후 생성물 몰분율 같을때 쓰던 논리인데
여기서 응용해서 부분적으로 잘 적용됨
3:6
6:2
로 맞추면 부피가 같음
이제 두 비례식 빼면, 비례식 왼쪽항은 3, 오른쪽 항은 4인데 이게 각각 부피가 같아. 따라서 이게 그대로 분자량비. 끝.
이유 설명하면
(가) 3:6
(나) 6:2에서
비례식 왼쪽항 최솟값 3, 비례식 오른쪽항 최솟값 2를 뽑아
즉 3:2를 생각해
이건 실린더 (가)이든 (나)이든 부피가 같을거야
(가)와 (나)에서 각각 3:2를 빼주면, (가) 0:4, (나) 3:0이야
근데 (가)와 (나)는 원래 부피가 같았고, 같은걸 빼줬으니 부피가 같아
따라서 부피가 같은데 그 질량비가 3:4이니 이게 분자량비.
이게 기본 원리고, 결국 결론은 “공통항”을 빼도 같다는건데, 이게 사실은 서로 빼주는거랑 동일한 행위라서 맨 처음 보여준 풀이가 나와.
나는 이거 양적관계에선 “닮은 반응”이라고 부르는데 언젠가 올려볼게. 공통항 소거중 한 부류.
+)사실 윗 설명은 양적관계에서 쓰는 택틱을 양론으로 옮긴 형태의 설명이고
일반적으로 내가 양론에서 많이 쓰는 풀이는 아래임. 아래에서 말할 일종의 꼼수?를 알아두면 좋아. 분자 이름이 너무 기니깐 왼쪽놈 A, 오른쪽 B라 하면,
(가) = A 3g + B 6g
(나) = A 6g + B 2g
으로 그냥 써. 상황이 그러니까.
(가)와 (나)의 부피가 같으니, 부피로 식을 세울거고, 이제 식에다가 이런 의미를 부여해.
A 3g + B 6g -> A 3g의 부피 + B 6g의 부피 (이지만 굳이 표기를 하진 않고 머리속으로 생각)
그대로 식을 전개해
A 3g + B 6g = A 6g + B 2g
A 3g = B 4g
아까 의미부여한걸 생각하면, A 3g 부피 = B 4g 부피.
따라서 분자량비 3:4가 나와.
이거 많이 쓸 수 있을거야.
++) 이 문항 역수이중내분의 경우, 솔직히 “좋은” 풀이는 아니라고 생각함. “평범한” 풀이 정도에 들어가는듯. 내분을 잘하고, 빨리 한다면 이 문제 정석풀이랑 속도가 비슷할수가 있을 것 같음. 이유를 좀 말해보자면...
일단 이 문제만 놓고보면 역수내분은 내가 한 풀이보다도 느리고, 질량을 똑같이 잡고 연립하는 풀이보다도 느림.
저런 형태로 역수내분이 가능한데 숫자가 내분하기 매우 편하고, 되려 부피를 똑같이 맞춰서 풀기 어려웠다면 역수내분이 더 좋을수도 있으니, 단일 케이스만 놓고 주장하지 말라고 할 수도 있음.
근데 역수이중내분이 다른 풀이보다 더 우위라면 일반 대수풀이로는 식이 씹창이나는 상황이라 평가원은 절대 못냄... 평가원은 문제를 출제할때 내분으로 풀라고 상정하고 내는게 아님. 일반 풀이도 충분히 고려함.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
난 화1이 캐리해줘서 현 대학 왔는데 그 이후 화1을 보니 이건 뭐..
-
어떻기 쓰느냐가 중요한거지
-
정석민 박광일 심찬우 국어를 국어로 바라보는 샘들임 이분들 열심히 듣다보면 자기가...
-
이거 이상한거 맞죠..? 뭔가 하나는 틀린 거 같은데 어떻게 해야되나요
-
가천대 의대 논술 이번주 일요일 맞는거죠? 토요일이라 그러는 분이 있어서
-
안녕하세요. CRUX 차수영입니다. 수능이 끝나고 잘 쉬고 계신지요. 오늘은 다소...
-
이맘 때 학과 고를 때 도움 되는 이야기일까 하여 적어봅니다. 인어문 학과 보시면...
-
어떡하지 다른 건 재미가 없어 여기서 시던잖은 수능 얘기하는게 젤 맘이 편해
-
물리/화학 백분위는 1,2 다 터져있는데 2는 그나마 깡표라도 좀 나아서 이득...
-
씨름 10년차 아마추어 100명 중 1등하기 씨름 1년차 윤성빈 이기기 난 전자가...
-
9평 수능 100점입니다 평가원만큼 깔끔하고 명확한 논리와 선지가 없음
-
메가 합격예측 0
메가에서 현재 80프로정도 뜨면 실채점 뜨더라도 가능하다고 생각할 수 있나요..?...
-
원투는 +3점 투투는 +5점 가산점 주는데 이미 하던 생1 버리고 노베 화2 시작할...
-
ㅈㄱㄴ
-
저는 문학은 몰라도 비문학은 무조건 독학하면서 독해력 향상시키는게 실력 향상하는...
-
거긴 더 빡세지 않나 이미 의대 걸어놓은 애들이 바글바글 할텐데 응 망해도 의대야 하는 마인드
-
jpop 추천해주세요 16
유명하지 않은 것도 괜찮으니 추천 부탁드립니다..
-
화2 주문 완 6
50점 한자리 예약이요~
-
근데 올해는 기출에 매진하면 잘볼수 있었다가 맞나요? 3
그냥 궁금하네요... 이번수능 잘보신분들의 의견은 어떠신가요?
-
종이가 좋은뎅
-
인생 ㅠㅠ이
-
25만 질러서 원기베리 4셋 깠는데 까만펫? 자석펫 재료 8개가 나왔음 그거 다...
-
얼버기 6
오늘도힘차고좋은아침
-
컷 내려가고 나만 점수 그대로일텐데 아쉽다
-
꿈돌이 만나러 가는 중이랍니당 허헣
-
내년에도 의대생 누워야되면 강제 +1수라서
-
강원의vs 연원의 어디가 더 낫나요?
-
6월 21211 9월 22122 수능 12221(가채점) 셋다 비슷하구만
-
키미오 사가시 하지메타요
-
님드라 이거 봐 13
-
수시납치 6
수능 성적이 백분위로 언매 97 미적 85 영어 2 생명 89 지구 100인데...
-
여 김장겸, '나무위키 투명화법' 발의…"국내법 적용받게 해야" 3
[서울=뉴시스] 한재혁 기자 = 김장겸 국민의힘 의원은 21일 일정 규모 이상 해외...
-
지금 연미의 건국의 이런 곳 텅텅 빔 ㅋㅋㅋ 지금은 다들 행복회로를 돌리는 시기라는 것..
-
음 수능 끝나고 논술 준비하면서 할 거 없어서 2511 지구과학 오답률 보면서...
-
오르비 유저분들의 생각이 궁금합니다
-
귀찮..
-
댓글보면 가슴이 답답해짐 PC방에서 외국인이랑 싸우는 기분
-
말을 하면 된다
-
좋은 아침? 10
-
둘 다 합격하면 어디가세요?
-
아는애가 투움바파스타 먹고싶다고 노래를 불러대는데 그렇게맛있음? 양이 많은편인가요...
-
서울권도 그럼?
-
국어가 망해서 ㅜ 108 132 3 64 62 면 세종대 낮공 가능한가요 ㅜㅜ
-
넷다 존예..
-
문디컬 도전 생각중인데 원래 동아시아사는 일단 할 생각이였고 배경지식 어느정도 있는...
-
입결 ㄴㄴ 그냥 미래나 병원 전망 등등 으로좋은 순위요.. 경한이 1등일거고.....
-
과외알바를 생각하시는 분들을 위한 매뉴얼&팁입니다. 미리 하나 장만해두세요~~...
-
입결은 반영비따라 매해 바껴서... 그냥 병원이나 선후배 전통같은거만 보면요 당연히...
-
서 연 카 성 고 울 다음...
Dead God.
수고하셨습니다!
내신 때문에 아직 1단원까지밖에 안했는데… 밀도가 9:8이니까 총질량을 처음부터 9:8로 맞춰서 공통항 빼고 바로 분자량 구하는 게 엄청 신박하네요
저는 (질량비 합)/(질량비/분자량 합)을 밀도비로 해서 풀었는데 이 과정 계산 속에서도 같은 논리가 나오네요 이 계산 줄이는 게 화학에선 정말 중요한 것 같아요 <—혹시 이게 정석풀이인가요?
역수 내분은 김준쌤 거 찾아서 봤는데 오히려 복잡해서 유명하다던 역수내분이 저한테 안 맞나.. 했는데 이게 유용할 때가 있고 아닐 때가 있군요
아직 4단원 안해서 모르겠지만… 문제풀이 할 때면 쓰신 글 다 봐야겠네요 정말 유용할듯
그게 정석 맞아요