[이동훈t] 수학 22번 구조 분석
게시글 주소: https://m.orbi.kr/00065221757
2025 이동훈 기출
안녕하세요.
이동훈 기출문제집의
이동훈 입니다.
오늘은 화제의 문제
수학 공통 22 번에 대해서
ssul을 풀어볼까 ...
하는데요 ...
그 전에 ...
2025 이동훈 기출문제집
교사경 수학1+수학2, 미적분은
이미 판매 중입니다. (아래)
-단품
2025 이동훈 기출 수학Ⅰ+수학Ⅱ 교사경 편 34,000원 (오르비 할인가 30,600원) 판매중
2025 이동훈 기출 미적분 교사경 편 33,000원 (오르비 할인가 29,700원) 판매중
-세트
2025 이동훈 기출 수1(교)+수2(교)+미적(교) 56000원 판매중
(각 과목당 약 18000원 꼴)
판매 사이트는 아래
아래의 세 타이틀은 11월 27일(월)에 예판을 시작할 예정입니다.
(세트 상품도 함께 예판을 시작합니다.)
- 단품
2025 이동훈 기출 수학Ⅰ 평가원 편 (+실전이론 포함)
2025 이동훈 기출 수학Ⅱ 평가원 편 (+실전이론 포함)
2025 이동훈 기출 미적분 평가원 편 (+실전이론 포함)
-세트
2025 이동훈 기출 수1(평)+수2(평)+미적(평)
2025 이동훈 기출 수1(평)+수2(평)+미적(평)+수1/2(교)+미적(교)
아래의 두 타이틀은 12월 6일(수)에 예판을 시작할 예정입니다.
(세트 상품도 함께 예판을 시작합니다.)
- 단품
2025 이동훈 기출 확률과 통계 평가원/교사경 편 (+실전이론 포함)
2025 이동훈 기출 기하 평가원/교사경 편 (+실전이론 포함)
-세트
2025 이동훈 기출 수1(평)+수2(평)+확통(평/교)+수1/2(교)
2025 이동훈 기출 수1(평)+수2(평)+기하(평/교)+수1/2(교)
사정상 2~3일 빠르게 또는 늦게 예판이 시작될 것입니다.
최대한 빠르게 시작할 수 있도록 노력하겠습니다.
그리고 ...
2024 수능 수학 각 문항별 분석은
2025 이동훈 기출문제집 전 타이틀 출시 이후에
진행하도록 하겠습니다.
일단 올해 수능 총평은 ...
(1) 수능 답게 잘 만들어졌다.
(2) 작법(작풍)의 변화가 없다.
(실험적인 문제 없음.)
(3) 간접 출제 범위 (중등, 고1)에 대한
비중은 작년 수능과 엇비슷하다.
(개인적으로는 ...
이 부분에서 실험적이면서도
강렬한 문제를 기대했는데
아마도 최종 과정에서
싸악~ 제거된 거겠지.)
(4) (여전히) 옛날 기출도 중요하고,
최근 기출도 중요하고,
교육청, 사관, 경찰 기출도 중요함.
예를 들어 22번은 올해 고2 교육청 기출에서
영감을 받은게 아닌가 합니다.
아래서 설명하겠지만.
(5) 실전이론 여전히 중요하다.
미적분 30번은 변곡접선을 소재로 하고 있고,
이에 대한 연습을 한 수험생이 많이 유리합니다.
그리고 올해는 삼도극, 삼차함수의 비율관계, ...
등등 ...
볼멘소리 나올까봐
싹~다 판도라의 상자에 봉인시켰는데 ...
내년도 정치적 상황에 따라
(총선, 부동산PF, ...)
카와이한 악귀들이 대방출 될 수 있으니 ...
2025 수능 대비하는 분들은
가리지 말고 다 풀어야 겠습니다.
아니 ... 뭐 ...
올해 수능 당황스러웠다고
말하는 분들도 있는데
지금 돌아가는 상황보면 ...
내년은 더 당황스러울 가능성이 높아요 !?
다- 풀어야 합니다.
아멘.
이제 ...
22번 보시면요.
난 이 문제 보자마자
아래 문제 생각나던데.
올해 고2 9월 문제인데요.
이산으로 주어진 고2 문제를
연속으로 바꾸면 수능 문제가 됩니다.
이산과 연속은 고등학교 수학 교육과정에서
반드시 익혀야 하는 중요한 개념이고 ...
이를 문제 제작에 활용한 경우라
볼 수 있겠습니다.
22번의 짧은 풀이를 함께 보시면 ...
이 문제를 읽고 나서 다음과 같은 과정을 거쳐야
기출 학습을 제대로 한 것입니다.
(0) 문제에서 주어진 조건의 대우 명제를 쓴다.
(1) 두 점
(-1/4, f(-1/4)), (1/4, f(1/4))
이 주어졌고, 함수 f(x)는 연속함수이므로
구간 (-1/4, 1/4) 에서의
그래프의 개형을 먼저 생각한다.
(미적분에서 집합은 풀이의 단서가 된다고
저는 항상 강조합니다.)
(2) f(0) > 0, f(0) = 0, f(0) < 0
의 세 경우로 나누고
귀류법+사이값 정리로
f(0)=0 임을 보인다.
좀 더 자세히 설명하면
f(0) > 0 이고,
x->-inf일 때, f(x)->-inf
이므로
사이값 정리에 의하여
함수 f(x)의 그래프는 x축과 만난다.
이때, x절편의 값이 0- 에서 -inf 까지 변화시키면
맨 위에 (0)을 만족시키지 않음을 확인할 수 있다.
마찬가지의 방법으로
f(0) < 0
일 수 없다.
따라서 f(0) = 0 이다.
함수의 그래프의 개형을 그릴 때,
x절편, y절편을 찍는 것이
도함수/이계도함수/점근선에
우선함을 평가하고 있음.
(3) (2)와 마찬가지의 방법으로
함수 f(x)의 x절편을 변화시키면서
가능한 경우를 찾으면
위의 풀이처럼 세 가지의 경우가 나온다.
1번은 당연히 아닐꺼고
(과잉 조건일 가능성이 높으니까.)
2번 또는 3번이 답인데.
어느 쪽을 먼저 하는가에 따라서
계산 시간 30초 정도를
단축할 수 있다.
이 문제는 귀류법을 이용한
그래프의 개형 그리기에 대한
전형적인 문제로 ...
작법의 관점에서 새로움이 없습니다.
그러므로
문제 풀이에도 새로움이 없습니다.
자 ... 그러면 ...
22번은 킬러 일까요 ?
이 문제는 킬러가 맞습니다.
왜냐하면 올해 수능 30 문제를
난이도 순으로 쫙 나열하면
가장 어려운 문제가 될텐데.
가장 어려우니 이 시험의 킬러이지요.
최상위권까지 변별해야 하는 시험에서
킬러가 없다. (또는 없애야 한다.)
라는 가정 자체가 잘못된 것이니까요.
다만 과거 수능에서 출제된 ...
야수성 넘치는 킬러와는
비교하기 힘들 정도로
맥이 많이 빠진 킬러라고 생각합니다.
수능 치루신 모든 분들 수고 많으셨습니다 !
.
.
.
다음주에는
2025 이동훈 기출문제집 고1 수학 PDF가
공개되니 많관부 !
ㅊㅊ
2025 이동훈 기출
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
근데 오르지 앱에서 똑같은 글 2개씩 보이는 경우가 있는데 0
이거 어떻게 된 거예요 컴으로 봤을 때는 그런 거 아예 없었는데
-
오르비에서 본적 없는것같음..
-
작년에만 적게 돌았던데 이유가 있나요?? 올해는 어떨까요?
-
예비 고3 26 수능 화1 볼 거고 메가패스랑 고석용 베개완은 있는 상태고...
-
설대 점공계산기 1
서울대 이과 낮은과 이정도면 ㄱㅊ다고 보면 됨????? 계속 떨어지려나
-
만
-
좀 전에 이대 사대 글 쓴 사람인데요 대학 결정 조언 부탁드립니다.. 제발료 1
작년에 걍 다 상향으로 질러서 올해가 첫 정시 원서 접수라고 봐도 무방합니다 가 )...
-
그냥 강의 안듣고 작년 교재 복습편 보면서 기출 다시 봐도 되겠죠 강의 다시...
-
1.이전부터 모집인원33명인데 합격권 21명 정도로 너무 과하게 짜게 잡는다는 말이...
-
님들이라면 어디가나요?
-
질문 좀 합세다
-
아직 말짱한데 벌써 시마이 친다고?
-
으아아아
-
소개 보니까 한국판 로맨스 우주여행 뭔가 신박한데 볼까
-
근데저거뭐지풀어볼까
-
ㅇㅈ 11
할려다 이짤에 긁혀서 못하겠음
-
족보 0
이런거 얼마에 파나요
-
버튜버도 좀 봐야하나 24
요즘 이쪽 시장이 진짜 많이 커진 느낌인데 점점 양지화될 가능성있나 투자할만한 거 같은데
-
ㅇㅅㅇ
-
사람 찰때마다 순위 확인하는 그 쫄림,너무 재밌음 떨어지면 슬픈데 유지되면 도파민나옴
-
질받 2
공부든 뭐든 노상관 아무거나
-
고경제는 655근처고
-
매일 최소7시간씩은 자는데도 공부할때 자꾸 졸음이 오는데 원인이 뭘까요? 체력문제인건가.....
-
공부합시다 0
신승범입니다
-
맞팔합시다
-
오늘도 드디어 끝!
-
텅텅 0
-
유툽 뉴스채널에서도 ㄹㅇ 개아프다하고 댓글들도 막 살벌하고 아니,,, 난 독감말고...
-
ㅈㄱㄴ
-
작년 중대 ict 추합은 갑자기 왜 확 줄은 거임? 2
왜 1000까지 돌다가 작년에 800으로 훅 떨어짐?
-
수학 빵꾸난 곳 채우기 좋은 기출문제집 추천좀요ㅜㅜ 6
삼각함수 활용이랑 적분부분 빵꾸났는데 컴팩트하게 해결할 수 있는 문제집 추천해주세요...
-
국어 질받을 해볼까요 17
올수 언매 백분위 99입니다 이제 기억이 가물가물 해졌지만 현역때 화작으로 100점...
-
교과우수로 기억하는데 빵이였나?
-
엔비디아 숏 드가자 10
지옥 가즈아 ㅋㅋㅋㅋㅋ
-
한양대 빨간과잠 1
한양대 빨간과잠은 어디과인가요? 분교인가요?
-
노래방 뮤비에서 자주 보이던 친구들이네
-
공포에 매수하라 3
아니 씨발 돈이 있어야 매수를 하지
-
무료배송비야미
-
좀 짰다가 막판에 후해졌음?
-
국영 시간 좀 줄이고 수학 시간 ㅈㄴ 늘려야되나...
-
16만원 더 내기 개아깝다 ㄹㅇ
-
플레이브라는 아이돌 22
이건 나한테 상당히 신선한 충격이었음 그냥 버튜버까지도 어캐저캐엿는데 그냥 진짜...
-
아니 오르비클래스에 내가 안들은 오티 영상 시청 기록이 있는데 해킹 당한거 같은데...
-
이게 제성적은 아닌데 만약 평균 4 4 1 1 1이런식이면 연고대 써볼만한가요
-
아직 기출 오답도 다 못한 상태인데 어삼쉬사같은 다른 문제집 보지말고 기출 오답...
-
현역 55234 재수 23212 쌩재수해서 경희대랑 동국대 썼는데 객관적으로 이...
-
n명 뽑는데 n등 진짜 피말린... 라기에는 해탈상태 한 명만 더 들어오면...
-
877.02점인데 추추추합 가능? 고속 연초인데
내년도 정치적 상황에 따라
(총선, 부동산PF, ...)
카와이한 악귀들이 대방출 될 수 있으니 ...
이젠 수능도 정치 눈치를 이렇게 심하게 봐야하는 상황까지 온게 끔찍하네요...