복소수
게시글 주소: https://m.orbi.kr/00066530516
1, 2, 3, ... 이러한 수들은 자연수(Natural number)입니다.
1보다 1만큼 작은 수는 0입니다.
0보다 1만큼 작은 수는 -1이며
-1보다 1만큼 작은 수는 -2입니다.
이렇게 ... , -2, -1, 0, 1, 2, ... 와 같은 수들은
정수(Integer)입니다.
그리고 두 정수 p, q를 활용하여
꼴로 나타내어지는 수는 유리수(Rational number)입니다.
이때 6/3=2와 같이 약분 시 정수가 되면 그것은 정수,
5/3와 같이 약분이 되지 않으면 그것은 정수가 아닌 유리수로
분류하곤 합니다.
그리고 루트2와 같이 q/p 꼴로 표현할 수 없는 수는
무리수(Irrational number)입니다.
유리수와 무리수를 통틀어 실수(Real number)라고 부릅니다.
그리고 이 실수에 제곱해서 -1이 되는 허수 단위(Imaginary unit)를 곱해
얻는 수를 허수(Imaginary number)라고 부릅니다.
그리고 실수와 허수의 합으로 이루어진 수를
복소수(Complex number)라고 합니다.
일반적으로 이 이차방정식의 해는 존재하지 않습니다.
하지만 해가 존재한다 가정하고 그것을 i라 정합시다.
이것이 허수 단위의 정의입니다.
그럼 이와 같은 생각이 가능합니다.
그래서 i를 루트-1이라 하냐 -루트-1이라 하냐
이야기가 나올 수 있는데 어느 쪽으로 생각하든
i를 통한 연산에는 변화가 없습니다.
그래서 보통 i=루트-1로 편하게 생각합니다.
허수는 bi 꼴입니다.
복소수는 a+bi 꼴입니다.
이러한 복소수를 우리는 복소평면(Complex plane) 상에
나타낼 수 있습니다.
평소에 접하는 직교좌표계 (Cartesian coordinate) 에서
x축을 실수축, y축을 허수축이라 생각할 때
x좌표는 실수 부분 a를, y좌표는 허수 부분 b를 설정해
점 (3, 5)와 같이 나타내는 것입니다.
후에 수학1 (2022 개정 교육과정부터는 대수) 에서 삼각함수를 배우거나
미적분 (고등학교 교육과정 밖) 에서 극 좌표계 (Polar coordinate) 를
배우시면 익숙해지실테지만 우리는 평면 상의 어떠한 점을
기준점으로부터의 거리와, 기준점과 점을 이은 선분이 기준선으로부터
시계반대방향으로 얼마나 회전하였는지를 기준으로
나타낼 수도 있습니다.
이런 식으로요!
우선 여기까지만 알아봅시다.
어떤 복소수 z의 켤레복소수는 허수 부분의 부호만 반대로
해준 복소수입니다. 다항식의 연산 공부할 때
덧셈, 뺄셈은 동류항끼리 해주었듯이
복소수의 연산도 덧셈, 뺄셈은 실수 부분끼리, 허수 부분끼리 해줍니다.
다항식의 연산 공부할 때 곱셈은 분배 법칙에 따라 해주었듯이
복소수의 연산도 곱셈은 분배 법칙에 따라 해줍니다.
(복소수에서도 교환, 결합, 분배법칙 성립합니다.)
무리수 배울 때 유리화 배웠듯이
복소수 배울 때도 유리화 합니다.
분모에 i가 보이면 합차 공식 적당히 집어넣어
보이지 않도록 해줍시다!
그리고 이러한 연산을 배우는데
"루트 안에 음수 있으면 i 활용해 빼준다"만 기억하시면 됩니다.
마찬가지로 "루트 안에 음수 있으면 i로 빼준다"만 기억하시면 됩니다.
이제 문제 두 개 풀어보겠습니다.
쎈 고등 수학(상) 1판6쇄 II-03 C단계 355번 변형입니다.
z_1, z_2는 복소수입니다.
따라서 a+bi 꼴로 나타내어 봅시다.
조건이 여러 가지 주어졌을 때는 하나씩 접근합니다.
먼저 A 조건부터 살펴보겠습니다.
미지수가 여러개일 때는 줄이는 것이 편합니다.
복잡한 세상 속 편하게 산다 생각하시면 됩니다.
따라서 A 조건으로부터는 다음의 정보들을 얻었습니다.
이제 B 조건을 살펴봅시다.
합차 공식으로 계산해주니 b=1입니다.
이때 a^2+b^2=4이므로 a=루트3 or a=-루트3입니다.
따라서 A, B 조건으로부터 다음의 정보를 얻었습니다.
이제 C 조건을 살펴봅시다.
a가 양수이므로 a=루트3임을 알 수 있습니다.
따라서 A, B, C 조건을 모두 고려하면 다음을 얻습니다.
이제 답을 내어줍시다!
답은 -4루트3 i 입니다.
다음 문제로 넘어가보도록 하겠습니다.
같은 문제집 361번 변형입니다.
뭔가 비슷한 것들끼리 있거나 거대한 것이 있을 때에는
치환해주면 좋습니다. 다양한 문자가 있지만 저는
정도의 대문자 X를 좋아합니다.
실제로 2022학년도 6월 미적분 30번을 현장에서 풀 때
alpha와 beta에 대해 정리해야할 식이 일치하기에
X로 치환하여 해결했던 기억이 있습니다.
그럼 다시 문제로 돌아와서...
함수 C(x)=1/x를 살펴볼 때 1이 방정식 C(x)=1의 유일한 해이므로
식을 한 번 정리해냈습니다.
다시 치환을 통해
식을 한 번 정리해내어줍니다.
이제 마지막입니다.
찐막~
따라서 방정식 C(B(A(A(x))))=1 의 해는 x=(1-루트3 i)/2임을
확인할 수 있었습니다.
p.s.
아까 직교좌표, 극좌표, 복소평면 등에 대한 이야기를 했었는데
r을 복소수의 absolute value 혹은 modulus라고 합니다.
대충 이런 느낌!
그리고 @를 복소수의 argument라고 합니다.
대충 이런 느낌입니다.
그리고 실수 x에 대한 항등식 Euler's formula도 알아두시면 좋습니다.
이를 이용하여
복소수를 위와 같이 표현해볼 수도 있습니다.
p.s.2
자연수, 정수, 유리수, 실수, 복소수에서 더 나아가
사원수(Quaternion)를 정의할 수 있습니다.
이렇게 생겼습니다. 1, i, j, k는 4차원 벡터공간의 기저 벡터입니다.
이라는데 저도 잘 모르겠습니다. 4차원 얘기 나오는 것으로 보아
사원수가 우리가 공부하는 수학에서 등장하진 않을 것이고
순수 수학(Pure mathematics) 쪽에서 쓰일 것임을
짐작해볼 수 있습니다. 실제로 그러한 것으로 알고 있습니다.
왠지 외적에서 등장하는, 3차원 공간의 단위 벡터 i, j, k와도
연관이 있어 보이는데 이는 저도 잘 모르겠으니
더 공부해서 오겠습니다!!
2022 개정 교육과정으로 고1 수학에 행렬이 들어왔으니
2028 개정 교육과정 정도에는 외적, 공간벡터, 입실론-델타 논법,
다변수함수의 미적분 (편미분, 중적분) 도 기대할 수 있지 않을까요?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
하게해줘..
-
T멤버십 하니까 2천원 할인돼서 개꿀이네 편의점 아이스크림가격이랑 비슷
-
수시 6장 쓰시면 됩니다~
-
성적 꽤 올렸는데
-
어떻게 그럴수가있는거지
-
오늘의 공부 1
영단어 이틀치 피램 독서 이틀치 개념어 인강 독해 인강 및 복습 국어 주간지 1일분...
-
[의새대나무 숲 유튜브 펌] 원광대 의대 중간평가 불인증, 의평원 불인증이 쏟아진다 1
유튜브 의새대나무숲 펌입니다.4분도 안되는 짧은 영상이니 관심있는 분들은 직접...
-
자신이 이렇게 공공재가 되어버린 걸 알까
-
걍 공부안하고 간다 귀찮다..
-
비트겐슈타인이 왜 물로켓인가요
-
볼게 없네 주술회전 나히아 최애의 아이 등등 다 결말도 박아버림 처참하다 처참해
-
중대 솦 추합 0
762.69 예비 349번인데 솔직히 여기까진 힘들까요?
-
지금 예비 나온 사람들이 왜 ㄱㄴ 하냐고 물어보지 난 1800등 정도로 붙은거같은데...
-
[속보] 尹 “부정선거 증거 많아…미니 병력의 초단시간 계엄” 3
15일 현직 대통령으로는 헌정 사상 처음으로 체포돼 고위공직자범죄수사처(공수처)의...
-
상상 5
가볍게? 합격 일주일에 하루 정도 모의고사 풀고 돈도 받고 힐링하러 간다고 생각해야죠 좋네요
-
이게 제일 궁금함 제발.. 일단 저 쓴 학과는 셈퍼님 25버전보다 후하게 나왔음...
-
성대 에너지학과 양자정보공학과 얼마나 돌까요?
-
추합되나요?
-
셈퍼는 356번 줬는데 비슷하네요 ㄷㄷ 여기까진 돌겠죠?
-
평반고임? 아무리 생각해봐도 잘 모르겠음
-
다들 몇바퀴 돌거라고 예상하세요??
-
오늘 최초합했는데요 1지망 합불 상관없이 미등록하려는데 그냥 가만히 있으면 되는 거??
-
심심해서 성대 질받 20
전 사과계로 입학했습니다
-
평균(표준편차) 독서 70 (17.6) 수학2 55.2 (18.1) 영어2...
-
둘 다 공대인데 인식 아웃풋 캠퍼스 등 다 고려해서 어디가 나음?
-
최저낮은걸로 이번에 수시 하나 넣을까
-
강사 학력 별 관심 없었는데 하고 나서부터 좀 보게 됨
-
우럿어
-
몇배수돌라나요?
-
처음으로 글삭당함…ㅠㅠㅠ
-
3일동안 힘들어 뒤지는 줄 알았네 다음부턴 그냥 잠만 자는 원룸으로 구해야지…
-
의대 못가는 내가 개병신같네 한 두세번 더 하고싶고
-
로스쿨 2
로스쿨 입학시 검사,판사에 대한 선호보다 빅펌 변호사에 대한 선호가 더 높은...
-
받고싶다
-
다음
-
쪽지 주세요(미지원데이터는 불가합니다. 타군 지원현황을 보고싶어서용) 약대 점수공개...
-
중앙대 합격생을 위한 노크선배 꿀팁 [중앙대25][새내기 시간표, 과목 관련 FAQ] 0
대학커뮤니티 노크에서 선발한 중앙대 선배가 오르비에 있는 예비 중앙대학생, 중앙대...
-
어떻게든 학교가 가고 싶은데... 2부제나 3부제 한다는 이야기가 있는데 가능성...
-
중대 합격인증 6
-
멘탈 터져서 자퇴했엌는데 이 내신을 어케 포기함 흑흑 05냔생 예비 고3임
-
22명중 21명이 남자인 사범대가 있다? 심지어 그 21명이 다 물리력 충만하게...
-
중솦 3
캬캬
-
2015버전은 사람이 그래도 재미있었는데 지금은 수학을 가르치는 로봇같아요 우진T
-
합격 가능?
-
케인스 경제학 4
의 존 메이너드 케인스가 게이였다는 사실 아시나요? 소싯적에 화끈한 게이었답니다....
-
카톡은 하는게 맞는거같고.. 에타는 굳이 관심없으먼 안해도무방한거죠??
-
ㄷㄷㄷ
-
차피 또 휴학할거같은데 과탐좀만더깎으면 화학같은일안일어나면
선샌님..어지러워요멋있어요
예비고1 과외 하게 되어서 수학(상) 복습 중에 있습니다,, 제곱근 연산 부분에 부호 오류 있어서 얼른 수정했네요! 시간이 늦었는데 좋은 밤 보내시기 바랍니다.
어우 샘 멋있어요 과외준비 아주 철저하시고 번창하십시오 ㅎㅎ