[수학] 이게 보인다면 상위권임. ㅇㅈ?
게시글 주소: https://m.orbi.kr/00067767850
안녕하세요
수학강사 이대은입니다.
오늘 글 주제는
제목 그대로입니다.
제가 글에서 적는 것이 보이지 않는 학생이라면
혹은
보려고 노력하는 학생이 아니라면
지금하는 공부가 잘못됐을 가능성이 높습니다.
시작해볼게요.
잘 읽어보고 판단해보세요 :D
다음 문제를 보고 여러분들은 어떤 생각이 드시나요.
아마 80%의 학생들은 다음 두 가지는
떠올렸을 거예요.
참고로 이 문제의 오답률은 83.7%입니다.
여기서 위의 로그식을 지수형태로 바꿔서
두 식을 연립하면
다음과 같은 식이 됩니다.
아마 여기까지는 꾸역꾸역
도달한 학생들이 많을 거예요.
문제는 이 다음부터인데요.
아마 여기서 70% 정도의 학생들은
이 식을 적고도 속으로
So what?
이라 생각했겠죠.
근데 여기서 만약 문제에
라는 조건을 적용시킨다면
b가 1개란 뜻이므로
방정식
에서
로 치환하면 이차방정식
의 양의 실근이 한 개임을 이용하여 답을 구하면 된다.
이차방정식에서 구간에서의 실근의 개수
와 관련된 문제는 근의 분리를 이용하면 되기에
와 완전히 같은 문제가 됩니다.
그럼 결국 제가 여러분들께 물어보고 싶은 질문은
과연 위의 두 문제가 서로 같은 문제임이 보이느냐.
입니다.
아마 다들 보이지 않았으니
오답률이 83.7%나 되겠죠?
그럼 이제 두 번째 질문입니다.
위의 두 문제가 같은 문제임을 파악하기까지
필요한 수학적 개념이 과연 수학1에 있는 개념인가?
입니다.
조금 격하게 표현하면
So what?
에서
이걸 활용할 수 있느냐
입니다.
솔직히
한국어를 아느냐
와 같은 것이죠..ㅎㅎ
일반적으로
안정적인 1등급 이상의 학생들은
첫 문제와 같은 준킬러 이상의 문제에서
두 번째 문제와 같은 기본유형을
찾아내는 것을 매우 잘합니다.
그렇다면 1등급이 되려면
문제에 들어있는 유형들을 파악하는 훈련을
반드시 해야겠죠.
여기서부턴 이번 총선특강 홍보입니다.
.
.
.
4/10 선거날 총선특강을 진행합니다.
주제는 앞서 말한 것처럼
상위권이 되기 위한 앞으로의 공부 방향성
입니다.
지식의 전달이 아니므로
가볍게 이해하고 가실 수 있도록 준비했습니다.
하지만 분명 수강 전후가 큰 차이가 있을 거예요.
비록 시간과 비용이 아깝다고 느낄 수 있으나
매년 많은 학생들이 이 주제를 듣고
다른 학생들보다 빠르게 성적을 올렸습니다.
올해 수험생활에 있어
가장 가치있는 시간이 될 수 있으니
꼭 얻어가셨으면 좋겠습니다!
비대면도 있으니 시간이 부담이신 분들은 참고하세요!
물론 현장에 오셔야 많은 대화가 가능하니
되도록 현장에 오시길 권합니다!
강의 안내 글: https://orbi.kr/00067722260
그럼 이번 글은 여기에서 마무리하겠습니다.
다음에도 유익한 글로 돌아올테니
좋아요, 팔로우, 댓글
부탁드릴게요!
수학강사 이대은
현) 오르비학원
현) 대치명인학원 중계
전) 여주비상에듀기숙학원
*2023, 2024학년도 수강생수 전과목 1위
유튜브
https://www.youtube.com/channel/UCx4VfPZoN1DGJFGwXPxa4bQ
수강신청링크
https://academy.orbi.kr/intro/teacher/466/l
https://academy.orbi.kr/intro/teacher/466/l
https://academy.orbi.kr/intro/teacher/466/l
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
시같은거보다 소설류는(특히 고전소설) ㄱㄴㄷ밑줄 나오면 바로 문제로 돌아가면...
-
늦은 저녁에 집 앞으로 나와 찬 바람을 맞으며 연초와 전담을 번갈아 후..후.....
-
“한국은 지금 전쟁 중?” 묻는 외국인들…내일도 서울은 ‘난리통’ 18
[이데일리 이로원 기자] 올해 들어 광화문 등 서울 도심에서 한 번도 빼놓지 않고...
-
진지하게 수특 수학에 있는 모든 문제 다 풀수있으면 백분위 97 이상일거 같음
-
작년 수능땐 5문제를 손도 못대고 틀려서 멘탈 개털리고 3등급 중후반 대가 나왔음...
-
1컷 84이려면 2
객관식에 모두를 조져버리는 문제 하나쯤 있어야 함. 23수능 14번 24수능 미적...
-
못하는 과목도 없는데 잘하는 과목도 없네 수능 전에 자신감이 붙어야 뭐가 되는건데...
-
그는평가원을 사랑했다.
-
제가만든 대학 1
1.의과대학:2년제 2.약학대학:2년제 3.경영대학:단기과정...
-
1811 가형... 그거 30번은 풀라고 만든 게 아닙니다. 얻어갈 것도 없고....
-
먼가요??? 2506 제외하고..
-
오르비에는 수학황이 많구나 수학1컷 84면 난 너무 어려운데
-
적분 개념 어딘가 빵꾸 난거 같음 내 머리로 직관적으로 이해가 안됨 B-A를...
-
몇개를 틀린건지 한번 답 고르면 바꿀 수가 없음 진심
-
인생 좆같다 속 울렁거리고 머리 뒤지게 아픔 재수하기 싫은데 인간관계 망가지는 것도 싫은데
-
예전에 실모보면 찍맞해서 2중반이었는디 9월달부터 순수실략이 3초반으로 떨어지더니...
-
라떼는 장래희망 2
과학자 선생님 대통령 우주비행사 이런거였단말이다
-
나 영어 볼때마다 앞표지 버리고 안쪽시험지는 반대로 접어서 푸는데 수능때 그래도...
-
베카리아의 형벌관에서 강도보다는 지속성이 중요하니까 공리주의적인 입장에서 봐도...
-
다시 말해 초심을 끝까지 유지하는 게 생각보다 많이 어려운 것 같아요 분명히...
-
68분 언매 44번 문제오류 뭐노; 문제를 반대로 적어놨네
-
지문 한 5번읽고 이제 이해했네.. 이게 어캐 1컷 96떴지싶군 이제 브레턴만 뚫자
-
ㅋㅋ 볼수가없는데 구석탱이 사각지대에 달아놨네
-
수완 실모 0
원래 공통도 과목마다 다 다르게 나와요? 어쩐지 너무 쉽다함..
-
지금 망하면 멘탈 폭발할거같은데 그냥 기출분석만 벅벅 할까요?
-
올해는 꼭 성불
-
화작 20분+ 독서론 5분 화작과 독서론이 09시 05분 이후로 끝난다면 (가나)를...
-
44모 29회 1
23분 다맞음 하지만 빡빡하군
-
대전사람 특) 3
요즘 성심당 맨날 줄 서있어서 못간지 몇년 됨..... 나만의 작은 성심당이 너무 유명해져벌였
-
슬픈 생일 3
이네요
-
햇볕을 쬐러...독서실은 너무 어둡다
-
내 목
-
전재산 드림.
-
이거 들고 가면 빠꾸 당함? 안해봐서 모르겠는데 시험지 풀 때 꽤 유용한데
-
오레노 나와 에렌예거.
-
뭔가 화작은 안풀리면 끝까지 찾아낼라고 시간버릴거같긴한데 화작도 안풀리면 나중으로 넘기는게낫나요
-
하
-
뭔 공부냐 1
이젠 걍 빨리 끝내고싶네
-
실력이 오르긴 했구나..
-
푼 것 중에 공통에서 3이 하나도 없길래 3으로 찍었는데 2개 맞췄고 기하에서는...
-
어렵다 쉽다를 떠나서 정말 어디서도 못보던 전형적이지 않은 시험지일거같음 원래...
-
의지는 그럭저럭인데 폐렴걸리고 열남 쉬기엔 오전을 날려버렸고 며칠 일찍자고...
-
1. 탐구 표지에 계산하기 2. 탐구 시험지 처음에 받을때 제1,2선택 둘다 이름...
-
1컷 80 기1 88점으로 백분위 98쟁취하자
-
ㅇㅈ메타? 2
이 시기에도 ㅇㅈ하면 인증메타 굴러가나요?
-
작수 국어 0
국어 공부 일년동안 거의 안하고 기출 한두번 깔짝 풀고 언매 2컷 맞은 사람 잇던데 고능아임?
-
26회 28번 뻔하긴한데 재밌게 풀었음
-
서울대 내신반영 3
8학군 자사고 내신 총합 4.1 (1학년 때 잘맞고 그 다음에 정시로 돌림) 생기부...
좋은글이네요
최근 평가원들을 보면서 갈수록 고1때 내신에서 반복숙달한 논리를 고2때 이어붙이면서 내신을 준비한 경험이 있느냐 없느냐가 큰 차이를 만들것이라 생각했는데, 작년 9평부터 더욱 그렇게 되고있는것같습니다
중간에 수학 놓은 학생들은 더욱 설자리를 잃을것이라 생각하기에.. 바른 방향성으로 꾸준한 수학 학습을 해나가는게 정말 중요할것같네요
네네 ㅎㅎ
작년부터 고1 수학의 중요도가 올라갔죠..ㅠㅠ
그래도 학생들이 충분히 극복할 수 있는데 많은 학생들이 단순히 문제만 많이 풀면 성적이 오른다고 생각하는 점이 가장 아쉬운 부분이죠..ㅠㅠ
아니 밥먹기 전까지 40분 넘게 고민한 문제가 떡하니있는..
엇... 이 글이 조금이라도 도움이 되었으면 좋겠습니다 ;D
감사합니다
올해는 2라도 나오면 목표달성 ㅆㄱㄴ한데..
아직 많이 남았잖아요 ㅎㅎ
올바른 방법으로 공부한다면 1등급 ㅆㄱㄴ이라 믿고 파이팅합시다!
저거 어케 풀지 다 보이는데 수학 성적은 늘 안올라요 ,,,, ㅜ
혹시 기출문제라서 풀이가 다 보이는 건 아닐까요..?
정확한 건 직접 대화를 해야 되지만 처음보는 문제도 해석이 다 되는지 꼭 확인해보세요!
만약 아니라면 너무 기출만 학습해서 그럴 가능성이 높습니다!
그떈 기출분석을 조금 다른 방향으로 하시면 분명 달라질 거예요!
뭐랄까 익숙한 유형으로 느껴진?거같아요
치환하는 순간부터는 완전 전형적인 이차방정식같아서,,, 저 문제 자체가 기억난건 아닌데
약간 익숙한 느낌이었어요,,
완전 처음보는 문제로도 되는지 확인은 해볼게요 ㅜㅜ
네네 은근히 기억이 안 나는 거 같아도 잔상으로 보일 가능성이 높으니 처음 보는 문제도 같은 느낌인지 꼭 확인해보세요!
처음풀때 일케 햇엇네용
엇.. 훌륭하신 분의 교재군요 ㅎㅎ
꽤 어려웠는데 공부 열심히 하셨나봅니다 ㅎㅎ
실례지만 언제 기출인가요?
2203 21번입니다!
문제를 풀떄 어떤 생각으로 푸는지도 강의해주셧으면 좋겟습니다.
항상 새로운 낯선상황이 주어지면 못풀고 해설지 보면 이해되고 풀 수 있는 문제네 라고 꺠닫지만 다시풀면 못푸는 그런 상황이 큰 고민입니다
제가 정규수업시간에 하는 주제가 학생분이 요구한 바와 일치합니다!
늘 말하는 것이 한 문제의 풀이가 아닌 부분부분 쓰이는 풀이의 당위성을 파악하여 해당 문제만이 아닌 다른 문제에도 적용시키는 훈련을 시켜드리고 있습니다~!
혹시 도움이 필요하시다면 수업에 참여해보시는 것도 좋을 것 같네요 :D
기출분석 하면서 했던 생각이네요
오 꼼꼼하게 잘 분석하셨네요!
실력이 좋으실 것 같아요!
예전에 어떤 분이 기출문제를 기본유형의 조합으로 해석하고 정리해보라고 조언해주셔서 그대로 하고 있습니다
미분을 벅벅
특강만 따로 들을 수 있나요?
특강만 따로 신청할 수 있는 링크가 안 보여서요.
아 찾았습니다.
올려드리려 했는데!
알겠습니다!!
미적러는 왠지 미분해서 풀고 싶어지는 문제군요...
오호~~
저도 풀이 보여주세요
직접하긴 귀찮……..ㅎㅎㅎㅎ
실근1개인 경우이므로 첫번째 역함수 그래프랑 두번째 지수함수 그래프랑 접하는 상황이 아닌가여?.. 저는 그렇게 미분해서 풀었었는데 잘못된 풀이인건가
22 사관학교 13번 ㄴ보기
오
음 선생님이 말씀하신 부분까진 갔는데 근의 분리가 뭔지 몰라서 검색해봤는데 봐도 잘 이해가 안되네요 혹시 간단하게 설명 가능할까요?
근의 분리가 글로 학생분에게 전달이 다 될지 모르겠지만 근의 분리는 문제에서 요구하는 상황을 그래프로 표현하고, 대칭축, 함숫값, 판별식으로 동일한 상황을 나타내면 됩니다.
이때 축과 함숫값에 들어가는 x는 문제에 주어진 구간의 경계라고 생각하시면 됩니다!
일반적으로
안정적인 1등급 이상의 학생들은
첫 문제와 같은 준킬러 이상의 문제에서
두 번째 문제와 같은 기본유형을
찾아내는 것을 매우 잘합니다.
---------------------------------------------
정말 좋은 글인것 같습니다.
마음에 새겨 넣습니다.
제가 글을 못 쓰는 편이라 매번 쓰고도 진심이 전달되지 않는 것 같아서 아쉬운데ㅜㅜ
좋게 말씀해주셔서 고맙습니다~^^