6月 기하 28,29,30 Solution
게시글 주소: https://m.orbi.kr/00068292944
공통 영역에서는 밀도높은 계산과 비교적 낯선 발문과 조건을 제시함으로 시간을 소요시켰던 시험지었습니다.
선택과목에선 조금 숨통이 트이나.. 싶었지만 28번, 29번, 30번 모두 미출제요소와 특이표현을 삽입하여 까다로웠습니다.
바로 문제를 보시겠습니다, *(현장에서 응시한 원본 그대로이기에, 가독성이 조금 떨어질 수 있는 점 양해 부탁드려요..! :D )
28. 벡터방정식의 해석, 이등변 삼각형의 발견
1. QA+QP=2QM 중점 벡터 이용하기
2. 내적이 0 -> 수직 조건의 등장
3. WLOG, 임의의 p점을 세팅, Q를 작도해봅니다. -> 직선 OM은 현 AP의 수직 이등분선 -> 이등변삼각형의 생성 틀
4. |PQ|=|AQ|의 최소를 구하면, A에서 제일 가까운 Qm(1,-2)일때 |AQ|가 최소가 되며, 이때 |PQ|도 최소가 됩니다.
5. 원 밖에서 그은 두 접선 -> 합동인 직각삼각형 제조기 -> AQ는 원에 접하고, 삼각형 OAQ=OPQ가 됩니다.
29. 이차곡선의 방정식, 이차곡선의 정의요소
30. 벡터방정식의 이해, 이차곡선의 정의요소
#29.
1. 절댓값 풀기, y^2=1+-x^2/a^2 이니, 식을 정리하면 그림과 같이 쌍곡선과 타원을 얻을 수 있습니다.
2. PC+PD=일정 (루트5) -> 이차곡선의 정의 [타원]을 연상합니다. -> a=루트5/2, c^2=a^2=-1에서 c=1/2임을 얻습니다.
3. c+1=3/2=쌍곡선의 초점과 일치함을 확인합니다 -> A, B는 쌍곡선의 두 초점이 됩니다.
4. 쌍곡선의 정의를 연상합니다, BQ=AQ+2+12가 됨을 이용해 삼각형의 둘레를 구합니다.
#30.
1. 쌍곡선에 대한 정보 제시 -> 함수식을 작성합니다.
2. PF<PF' 조건을 만족하는 P는 x>0부분의 절반 쌍곡선 위에 놓임을 이해합니다.
3. WLOG, 임의의 P를 세팅, 쌍곡선의 정의를 이용해 PF = l, PF' = l + 6으로 세팅합니다.
4. 벡터방정식 쪼개기 (|FP|+1)F'Q = 5QP 에서 좌변의 F'Q벡터 앞에 곱해진 부분은 상수이고 F'을 시점으로 하니, 우변도 F'을 시점으로 하는 벡터로 분해합니다. -> 정리하면 (l+6)F'Q = 5F'P이고, F'P의 크기가 l+6, F'Q는 F'P의 방향을 연속적으로 따라가는 크기가 5인 벡터가 됨을 알 수 있습니다.
5. Q의 자취를 구합니다, 양수인 쌍곡선의 점근선의 기울기가 4/3이니, F'Q의 기울기 m 이 -4/3<m<4/3이 되는 부분으로만 생성됩니다.
*(5번 과정은 실전에서는 스킵하는 편이 시간단축에 도움이 되지만, 엄밀하게 Q의 자취를 제한함으로 명확함을 더할 수 있습니다. )
6. AQ의 최대 길이를 구하기 위해, 원의 중심을 경유하면 AF'+F'Q=5+5로, 이때 AF'의 기울기가 3/4이므로, 최대가 되는 Q는 Q의 자취 안에 존재함을 추가로 확인할 수 있습니다.
총평으로 기하에서 묵직함을 준 28번은 객관식이자 4점의 시작이지만 28 29 30중 가장 까다로웠고 벡터의 작도를 도형적 성질과 연계해야 하는 추론 문항이었습니다.
비슷한 느낌의, 추론을 요구하는 23.11.29의 평면벡터문항이 떠오르는데, 이 문제 역시 (다)조건에서 도형적 성질을 작도하는것이 핵심이었습니다.
앞으로 평면벡터를 연산할때 확대 축소(실수배), 평행이동, 내분, 외분등 교과서에서 다루는 벡터의 성질을 넘어, 그 작도되는 벡터들이 이루는 도형과 그 도형의 특수성을 다시 벡터 조건으로 녹여내는 연습이 필요할 듯 합니다.
29번의 경우 이차곡선의 식을 제시하는 특이표현과, 텍스트로 풀어둔 문장에서 이차곡선의 정의요소를 연상하는것이 핵심이었던 추론 문항이었습니다.
30번의 경우 제작년부터 틈틈이 보이던 이차곡선 + 벡터 융합 유형으로, 어떻게 식을 조작하면 이차곡선의 정의요소를 녹일 수 있을지를 생각해가며 풀이를 전개하는 것이 핵심이었습니다.
오늘 하루 모두들 수고하셨어요 ;D
긴 글 읽어주셔서 정말 감사드려요!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
걍 뒤져야지 0
성대 개물변 사망 ㅈㅈ
-
1=2=3 6
엄….
-
으흐흐 성글경 일루와잇
-
제가 물화생을 선택 했는데 어떤 강의를 들어야 하는지 너무 고민이에요ㅜㅜ 물생은...
-
근데 인문계열 갈 거면서 과탐 고르는 게 이상한 거 아닌가 6
뭐하러 고난의 길을
-
축제다!!!
-
이정도면 성대쓰자
-
23일까진 못살거같은데
-
취업 스펙에 상당한 도움 된다. 면접사정관들이 그 내용 보면 "이 시키 대학생활...
-
ㅈㄱㄴ 서강대보다는 덜 물인거같긴한데
-
고대는 언제 나옴
-
고맙다
-
1이랑은 간격유지 2랑은 간격좁힘
-
세상에 저게 뭐냐 ㄷㄷ
-
오...
-
성대 변표 7
ㅇ
-
성대 떴음? 3
물변임 불변임?
-
니네는 오지마
-
근데이제 하나가 삑난
-
사탐이 개꿀이란 거 다들 알고 계셨잖아요 알면서도 쓸데없는 고집때문에 점수가 낮아서...
-
과탐 1등급은 스테이하고 2,3,4등급 단체 런 박아서 1등급 컷은 저세상이지만...
-
왜인지 기억은 안나지만 고1때부터 고연한거리던 한양훌인데 이대로 걍 붙었으면 좋겟다
-
사탐에 중상위권 어느정도 공급되면 상대적영향으로?
-
아 씨발 0
생윤 윤사 해야겠네
-
과탐 3퍼 가산점 주는 메디컬들 갈만하다 아님? 국수 자신있는데 인설의 가고싶으면...
-
믿을건 오직 성대뿐
-
우선 이 문제 지문은 광야이고, 이 문제에서 ㄱ정답이 매화 향기도 인정되서...
-
주식 상승 기원 9
-
25 의평원 문제 생기면 의대인원 9할이 26수능에 들어갈확률높음?
-
어느 게 나은 것 같나요 갠적으로는 통합수학이 더 옳다고 보는데 문과 친구들이...
-
동생이 26수능을 치는데 성적이 너무낮아서 인문논술을 준비시키려고 하는데요, 국어는...
-
세상은 억까를 함 꺽일지 한 걸음 더 나갈지는 개인역량임
-
원래 4칸 아래 뚫으려면 어려운 사람도 도와줘야함뇽
-
물리 4등급이라 물변표 생각하면 유리한줄 알았는데 왜 떨어진거에요??????...
-
올해 의대 입학 자체가 안정적이지 않은데 안정적인 걸 좋아하는 성향의 학생들이 의대를 오는게 맞음?
-
거의 무조건 붙는데다 과도 만족스러운 중대를 나군에 박으면서 웬만해선 붙지만...
-
25 수능 미적 2고 이번에 재수하려고 하는데 뉴런 들을까요 담금질 들을까요. 둘이 뭔 차이죠..?
-
왜?왜? 오히려 사람은 늘었는데 ㅅㅂ
-
ㅇㅇ 수학도 통합시키고. . . 그러는게 나앗지
-
물1하고 인생망함 4달동안 개념기출 5회독이상 하고 6평 5등급 떴을 때 손절했어야함
-
ㅈㄱㄴ
-
학고반수할건데 성적순으로 학과 고릏 수 있는건가요?아님 무조건 가고싶은 학과 갈 수...
-
이번 수능 높3이에요 김현우 박종민 중 고민이었는데 강기원이 교재비가 가장 싸다고...
-
항공대 1
항공대는 후반 갈수록 진학사 칸수 많이 떨어지는 축에 속하나요 아직도 표본 부족한가
-
:)
-
보험으로 넣은 지방대학교에 애들 왜 갑자기 들어오냐 보통 이런 애들 유지될려나...
-
올해 처음쓰는 정시상담 안내글입니다. 입시집단 알파는 현재 오르비에서 상담하는 팀...
-
소신발언 5
통합수능 폐지해야 한다
-
추합 ㄱㄴ 할까요? 최종이랑 1점정도 차이나는데
Goat
와 그림 진짜 예쁘다
찾아와주셔서 감사드려요 :D
여름방학때 기하공부하고 제대로 한 번 읽어볼게요!
항상 좋은 글 감사합니다
저야말로 항상 따뜻한 말씀에 감사드려요 ㅎㅎ
스크랩 on
30번 진짜 풀이과정 다맞췄는데 답을6으로왜썼지 하ㅜㅜ
아 28 거의 다 풀었는데 쩝
아니 센세 오늘 현장응시하셨나요
오랜만에 모교에 가니 선생님들 다시 보고 좋았네요 ㅎㅎ
샤이님도 정말 수고 많으셨어요 :D
따뜻한 말씀 감사드려요
알게 됐었는데 볼 때 마다 글을 잘 쓰시는 것 같아요 ㅎㅅㅎ
좋게 봐주셔서 감사해요 ㅎㅎ
더 분발하겠습니다!
반가워요!
응원 감사드려요 선생님 :D
연쌤또봄?
감이 날카로운데 안보면 아깝다는 생각도 드네요
물론 학교 생활도 충실히 할거랍니다
아 티에이??
앗! 오르비고닉 현우진보다 낫다!
머래
제 수학 풀이의 근간은 현역때 수강한 뉴*입니다 ㅎㅎ
기하 어려워서 표점 동점각인가 했는데 낮네요
그래도 이정도 표점차면.. 만족합니다
찾아와주셔서 감사드려요 :)
답은 역시 기하
기벡고수 치사토 찬양하기
기 벡...?
기하컨텐츠는 사랑입니다..
고마워요 :)
28번 첫 발상이 저한테는 어렵게 느껴졌네요 … Q가 동점이고 P도 동점이다보니 A랑 P를 엮어서 중간벡터로 생각할 생각도 못해보고 괜히 원의 중심으로 분해하려다가 꼬였어요 잘 배우고 갑니다!
저야말로 도움이 되었다니 기쁘네요 :)
저 28번 뒤지게 안보이다가 이등변 발견하고 그냥 밑변이랑 높이 일차식 세워서 좌표로 풂... 30은 식처리가 결국 안됨 ㅠㅠ
28번 이등변 발견한 후 내적 계산은 여러 방법으로 해도 괜찮아요! 오히려 수직 틀이 명확해 좌표가 더 빠를수도 있을 것 같네요 :)
30번은 저도 처음에 우변 F로정리했다가 꼬여서
지우고 F'으로 다시 시도했답니다.. (22.11.29 이후로 식조작을 못하면 접근을 못하는 벡터문제는 흔하지 않았는데 갑자기 들어오니 저도 까다로웠어요)
30번은 (a+6)F'Q=5F'P에서 F'Q=5, F'P=a+6을 생각을 못해가지고 식처리 어쩌라고? 하다 끝났네요
다음부터는 반드시 한방에 풀리실거에요.!
고마워요 태루님 :)
ㄹㅈㄷㄱㅁ
기하 원래 많아봐야 하나 틀리는데 이번에 28 30 틀렸네요
다행이 1 뜨긴 했지만 난이도가 상당해서 풀면서도 풀고 나서도 참 재밌었던거 같습니다.
오늘 신성규쌤 해설강의 들어보니까 순수 난이도는 미적<기하가 맞다네요
저도 30번 식조작, 28번 관찰에서 시간이 끌렸었네요..! 평가원 기출 중 22 이후 상당히 어려운 문제가 맞아요 :)
애초에 기하가 재밌어서 기하 선택한지라 어렵지만 너무 재밌었습니다
최근 들어서 이런 멋진 문제는 참 오랜만인거 같아요
흥미를 가지고 파는것만큼은 이길수 없죠 :D
항상 응원하겠습니다!
와 이분한테 기하 과외받고 싶다..