국어 비문학 자작 문제(3000덕)
게시글 주소: https://m.orbi.kr/00068612115
국어 자작 비문학 기술.pdf
오늘은 비문학 중 기술 지문입니다
특히, 10번과 11번은 높은 수준의 추론을 요구하는 만큼 실제 이진법의 성질에 대해 고려하면서 푸시길 바랍니다
(11번 문제는 당연히 평가원이 이렇게 출제할 리는 없으나, 한계를 시험한다 생각하시고 푸시면 될 것 같습니다)
오늘 문제 중 특정 문제는 높은 수준의 추론을 요하고 있는 만큼 잘 생각해보시길 바랍니다
오늘은 어려운 만큼, 4문제 세트임에도 보상을 많이 드리도록 하겠습니다(가장 먼저 각 문제를 맞히신 분께 보상 지급합니다)
I. 2점 문제
8-400 XDK
9-400 XDK
10-1000 XDK
II. 3점 문제
11-1200 XDK
행운을 빌겠습니다
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
애기이제잘겡 4
코
-
도긩t 듣고 싶으나 지방에 살기에 듣지 못합니다 작년에 백호쌤 듣다가 그냥 암기식...
-
질문해드려요 。◕‿◕。 70
-
ㅈㄱㄴ
-
뉴욕 도서관에서 서바(수능샤프와) 부갤펌
-
시골똥개 6
내가 반찬 가져다주는 집 강아지 새끼 낳음 졸귀탱
-
애플 3배롱이라 마십퍼 ㅋㅋㅋㅋㅋ
-
ㅇㅈ 21
ㅋ
-
1년 휴학하면 붓기도 빠지겠지
-
토스 키기가 무섭네..
-
난 아무것도 못봤는데
-
ㅇㅈ 8
친구랑 빕스 갔다왔어요
-
수학 문제 푼거 ㅇㅈ 15
요즘 최대한 깔끔하게 문제 풀려고 노력중
-
진짜 광기들 앞에 다 쫄아서 그런가
-
소꿉친구 만화 1
-
딸감 ㅇㅈ 5
-
메인글ㅈㄴ웃기네 5
먐먐?저분이랑1년전에얘기한내용뿌려도될까여님아
-
ㅇㅈ) 12
워낙 존잘 존예들이 많아서 그런지 이건 뭐..
-
작년 현역때 6,9,수능 2/2/3이고 김현우쌤 라이브 듣다가 문제가 너무 어려워서...
-
아트빌더 어허누나 닮으신분 있었는데 탈릅하셨나
-
잠이안와ㅡㅜㅌ
-
눈 ㅇㅈ 3
노서버쎄 지켜봐줘
-
근데 3시간을 잔건 맞는데 4시간 폰하느라 3시간만 잣음 학원에서 엎드려서 자고...
-
눈만ㅇㅈ) 26
1분컷! 응업어이제 ㅋ 나가라
-
어 그래 형이야 11
-
잔치국수에요 11
맛나게 드세요
-
ㅇㄷㅈㅂ 1
연대. 조발.
-
광기 배워감
-
ㅇㅈ 2
메타 정상화용 처리속도 ㅇㅈ
-
노서버씨 지켜봐 0
당신을 없엔 대한민국의 안락사 전세계의 소망 내가 이을게 노의 의지를
-
몇년있으면 아들뻘되겟네 ㅅㅂ
-
얼굴 ㅈㄴ상향평준화돼있네
-
"크게 웃었다"
-
나만 못봤노
-
지금 8시간 햇는데ㅜㅈㄴ 아까움 근데 머리가 넘 아픔 걍 잘가요 아님 좀 더 할까요…후
-
메타를 모르겠네
-
주1일 3시간수업이요
-
개념완성 강의 좋아요
-
성형하고싶다 6
코랑 턱만 어케 해보면 더 예쁠텐데
-
저런 글 올라왓을때 다들 야야거리고 염려하는거보면 디씨까지는 절대 안감
-
ㅇㅈ 10
그것은 바로 제 풀래너
-
리버스 출산 글이 걍 샷다 내려버림
-
디시랑 차별점이 있어야할것아니니..
-
최대한 설명하고 잘그린건데
-
본인 고2때 여붕이가 인증 맨날 했는데 나랑 같은 독서실 다녔음 옯붕이는 어디에나 있다
-
ㅇㅇ?
4454?
맞힌 문항: 9
400덕 드리겠습니다!
ㅠ.ㅠ❤️
8번의 4번의 경우, 17-9=8을 계산할 때
17=10001, 9=01001로 나타낼 수 있고 이를 계산할 때 왼쪽에서 두 번째 자리가 계산이 안 되는 문제가 발생합니다
따라서 최상위 비트(맨 왼쪽 비트)에서만 2를 받아내림하여 계산하면 됩니다
-10001-01001=01000
10번의 5번의 경우는 [A]에서 이미 비부호형 정수 이진법에서도 1의 보수와 2의 보수를 사용하면 음수를 표현 가능하다는 식의 진술이 있으므로 옳은 진술이라 볼 수 있겠습니다
1 4 1 5입니다~
되게 어렵게 출제한 지문이라 누가 다 맞힐까 걱정이었는데, 정말 미국님은 언제나 대단하십니다
특히 10번과 11번까지 잘 풀어내셨단 것에 대해서 놀랍습니다
보상으로 나머지 2600덕 드리겠습니다!
감사해용 ㅎㅎ
정답(마감)
정수 방식 이진법 (비부호형(unsigned) & 부호형(signed))이 아니라
실수 방식 이진법(고정소수점(fixed) & 부동소수점(floating))이 주제였으면
난이도가 걷잡을 수 없이 높아졌을 것 같네요 ㅋㅋ
8
① 동일한 개수의 비트 하에서 비부호형 정수 방식 이진법으로 나타낼 수 있는 최댓값은
부호형 정수 방식 이진법으로 나타낼 수 있느 최댓값보다 2배 더 큰 수이다.
--> 비트의 개수가 총 n개일 때
비부호형 정수 방식 이진법 : 0 ~ 2^n - 1
(000 ... 000 ~ 111 ... 111)
부호형 정수 방식 이진법 : -2^(n-1) ~ 2^(n-1) - 1
(111 ... 111 ~ 011 ... 111)
따라서 비부호형 이진법의 최댓값은
부호형 이진법의 최댓값보다 2배 더 큰수가 아님.
9
④ ㄱ(오버플로)과 ㄴ(언더플로) 모두 제한된 비트의 개수로 인한 이진법의 경우의
수의 한계와 숫자가 가진 무한한 특성 간의 괴리로 인하여 발생한다.
--> 표시할 수 있는 자릿수는 유한한데 숫자는 무한하므로 ㄱ, ㄴ이 발생할 수밖에 없음.
10
① 동일한 개수의 비트 하에서 1의 보수를 적용하면 일반적인 부호형 정수 방식
이진법을 통하여 도출 가능한 수의 최솟값보다 더 작은 값을 나타낼 수 있다.
--> 비트의 개수가 총 n개일 때
일반적인 부호형 정수 이진법 : -2^n ~ 2^(n-1) - 1
1의 보수가 적용된 이진법 : -2^(n-1) + 1 ~ 2^(n-1) - 1
( 000 ... 000 = 0, 111 ... 111 = 0 )
( 011 ... 111 = 2^(n-1) - 1, 100 ... 000 = -2^(n-1) + 1)
따라서 일반적인 부호형 이진법보다 더 작은 값을 나타내지 못함.
11
⑤ ⓐ(게임 종료 조건이 구동되지 않는 경우)의 상황이 구현되지 않을 때,
이 게임을 통해 얻을 수 있는 점수의 최댓값은 127점이고,
이 게임을 통해 도출가능한 최종적인 점수의 값의 모든 경우의 수는 131이겠군.
--> 8비트 부호형 정수 방식 이진법을 사용하므로 점수 최댓값은 2^7 - 1 = 127점
점수가 0 이상일 때 게임 종료 : 0 ~ 127점 모두 가능
점수가 0 미만일 때 게임 종료 : -1(잡초x1), -2(감자x1 + 독버섯x1), -3점(독버섯x1)
따라서 도출 가능한 최종 점수의 모든 경우의 수는 128 + 3 = 131가지가 됨.
10번의 1번 선지가 적절하려면 2의 보수로 바꿔주면 됩니다
예를 들어, 8비트 부호형 방식 이진법에서 -127은
1의 보수를 적용하면 10000000
2의 보수를 적용하면 10000001로 표현되는데
이때, 2의 보수에 한해서 1을 감하여 2의 보수가 적용된 10000000을 -128로 사용할 수 있게 됩니다
[A]의 (1의 보수)+1=(2의 보수)의 서술도 그냥 넘어가서는 안 됐었던 거였죠
조사할 때에는 정수 방식 이진법에만 주목했는데, 올인원님 말씀대로 실수 방식 이진법도 상당히 흥미로운 주제인 듯싶네요, 한 번 알아보도록 하겠습니다
항상 감사드립니다
대중의 통제는 무슨 의미인가요?
-> ‘과학의 민주화’
왜 대중의 통제가 필요하다고 파이어벤트는 주장하나요?
->패러다임은 과학자들만의 것으로 여겨지는 데, 이는 과학의 독재 즉, 민주성이 훼손되며 대중의 과학의 진보에 대한 기여를 무시하는 것이나 다름 없기 때문이다.