2025年 사관학교 27,28,29,30 Solution
게시글 주소: https://m.orbi.kr/00068826272
오늘 시행된 25학년도 사관학교 1차시험 수학의 난이도는 꽤 높은 편으로, 변별문항의 난이도 역시 작년 수능에 지지 않는 시험지었습니다.
공통 영역에서 주목할만한 문항들은 11번, 15번, 20번, 21번, 22번으로 특수한 상황에서 일반적인 상황으로의 함수 세팅으로 변화하는 경향을 잘 보여주는 문항들로, 특수할 때를 가정해서 풀이하는 방법보다는 주어진 조건들을 기저적인 상황에서부터 차근차근 따져보는 능력을 요구하고 있습니다.
기하 문항은 공통 영역에 비해 다행히 전형적인 편으로 26번, 27번 같은 지뢰 문항들을 잘 해결하였다면 공통에서 시간을 확보하셨다면 충분히 해결하실 수 있는 문항들이었습니다.
27. #복잡한 계산을 만나면 잠시 차분해지자 #내적의 기하적 의미
도형 안에 내분점 / 외분점이 존재하고 길이비가 주어질 때 경험적으로, 사교좌표계나 t,1-t 내분점 공식을 이용해 만나는 교점 벡터를 표현하고, 이를 주어진 길이나 내적값을 이용해 연산하는 유형이 주로 출제되었었죠.
"아! 나는 뭔가 많이 아는게 있어!" 라고 기저벡터를 세팅.... 하면
좌표로 표현하면 뭔가 쎄한 느낌이 들며 내가 계산을 제대로 한게 맞나..? 하는 의문을 들게 하는 숫자들이 튀어나옵니다.
여기서 계산을 밀고 나가는 순간.. 빡빡한 공통 영역에서의 시간 소모로 인해 28, 29, 30에 치명적인 타격을 주게 되는 지뢰같은 문항입니다. (22.06.27과 비슷한 느낌입니다)
기하러로서 결론부의 AB+AC를 2AM으로 평균벡터를 이용하고 싶은 마음이 들지만 참아야 합니다..! 내적의 연산 성질을 이용해 식을 분리, 내적의 기하적 의미가 사영곱임을 이용하면 너무나 간단하게 해결하실 수 있습니다.
28. #이차곡선의 정의요소 #코사인 법칙1. 이차곡선의 정의요소 이용하기 -> PF'-PF=2a에서 PQ가 날라가니 QF'=2a를 얻습니다.
2. 이차곡선의 정의요소 이용하기 -> Q는 쌍곡선 위의 점이니 QF-QF'=2a에서 QF=4a를 얻습니다.
3. 조건 뜯기 -> (나)에서 둘레의 길이가 20이라 주어졌으니, PF=PQ=10-2a를 얻습니다.
4. 부분/ 전체길이 이용하기 -> PQ+QF'=10이고, 타원의 장축의 길이가 18이니 PF=8=10-2a, a=1을 얻습니다.
5. 결론부 확인 - 코사인 법칙의 이용 -> P의 x좌표가 궁금하니, 삼각형의 아랫변 길이가 궁금합니다 -> 코사인 법칙을 이용해 구하는 값을 얻습니다.
29. #끼인 평면의 작도 #코사인법칙
1. 끼인 평면 작도하기 -> 주어진 도형의 바닥이 직사각형 베이스이기에 수선의 발의 위치가 명확합니다. 수선의 발 X를 내리고 O와
연결하면 끼인 평면 AXO를 작도할 수 있습니다.
2. 공간도형 길이 분석하기 -> 모서리 길이 BO=2, BO'은 BD의 중점이니 BO'=3/2, XO'=BO'-BX로 주변 길이를 이용해 XO'을 구한 후 피타고라스를 통해 OXO'을 분석합니다.
3. 결론부 확인, 코사인 법칙의 당위성 -> 결론부가 BH의 제곱을 묻고 있고, 삼각형 BXH의 두 변과 호환되는 둔각에 대응하는 예각을 알고 있으므로, 코사인 법칙을 이용해 구하는 값을 얻을 수 있습니다.
30. #벡터의 합/차 #벡터의 최대/최소 #23.06.30 변형
1. 주어진 기하 상황 인지하기 / 작도하기
2. 벡터는 평행이동이 자유로움 -> OP+OQ=OX로 표현, OQ를 도형으로 생각하고 OP만큼 평행이동하였다고 생각하며 X의 영역을 구합니다.
3. 최대/최소는 원의 중심을 기준으로 사고하기 -> 주어진 영역 안에서 Xmin, Xmax를 구합니다
4. 명확한 수직의 틀 -> 성분화를 통해 구하는 길이를 얻을 수 있습니다.
무더운 한여름임에도 불구하고 사관학교 시험에 응시하여 최선을 다하신 여러분, 혹은 각자의 위치에서 열심히 공부하고 계신 여러분,
변함없이 여러분을 응원하겠습니다 :D
오늘 하루도 정말 수고하셨어요!
읽어주셔서 정말 감사드려요 :)
0 XDK (+10,000)
-
10,000
-
어케하면 그 짧은글에 와꾸 키 몸무게 목뒤 때 친구 수를 한번에 녹아내냐 니가...
-
저... 격합니다
-
병든수험생들의 마음을 치유해주는 요양원 내년에 대학 처음가는 분들은 기대좀...
-
근데 화2가 6
표본 ㅈㄴ높긴한데 투과목중에 현강없이 공부할수있는 유일한 과목이긴함
-
심-멘 1
명지대 최초합 ㅅㅅ
-
나는그래도인생에서하등잘난거없는 실패자인생이지만 다른사람에게질투심은느낄망정 최소한그걸...
-
문제집 질문 0
군대에서 부터 2년 준비해서 27년도 수능을 볼 예정입니다. 하루에 인강을 1-2강...
-
나 혼자 물1에서 꿀 빨면 그만이야!
-
언기쌍지 사탐런 5
백분위만으로 96 100 2 98 98 정도면 한의대 뚫을수있나요?
-
범위 줄여봤자 사교육 더 커지고 오히려 너무 꼬아서 출제하니 지능에 한계 느끼게...
-
없나요? 그냥 없나요 없을까요 조금은 있을수도 있지만 없나요
-
왜 다들 물2로 가는 것 같지
-
세지 사문 표점 0
둘다 46점인데 표점 세지 67 사문 68 가능할까요.. 표점 살짝씩 올라갈가능성은...
-
아니 한양 인터칼리지 준비하데 왤케 불안하냐 영어도 91인데 뭔가..뭔가 불안하고...
-
여러분들은 올해가 값진 해였나요?
-
수학 1등급 0
현재는 지방대에 재학중이고요, 수학은 계속 공부를 해야하는 상황이라서...
-
제발…
-
과외 맡길 수 있나요? 좀 믿음이 안 가지 않나… 그 전에 2년 과외 경력 있는...
-
플리즈
-
고2임 .책다샀는데 다시사기 아까워서 ㅎ
-
ㅈㄱㄴ
-
아잉 왜 지워 스물두우우울[1328491] 친구야 24
명분이 있으면 당당하게 비난해! 왜 글을 지우고 그러니 내가 대신 살려줄게 더 욕하도록 해
-
설마 찬우쌤 시대가셔서 그런건가요...
-
폰게임추천쥼 6
ㄱㄱ
-
자연대 지망입니다 서강대 너무 가고 싶네요 한양, 서강 중앙, 건국,
-
탐구 메가가 잘 맟추는 편인가요? 사탐인데 부산교육청이랑 메가랑 뭐가 더 믿을만함...?
-
좀만 비비면 이제 정시이월밖에 없잖아!!!
-
국어 6등급 노베인데... 선택은 화작할 예정입니다.. 그냥 봄봄기출? 부터 들으면...
-
21살 모솔 10
-
제가 원서 쓸 때 시간을 착각하는 바람에 시간이 겹쳐서 중앙대랑 외대 중에 시험...
-
눈앞에서 추합 끊겼는데 텔그 99퍼를 보니 마음이 편안하네요....
-
[칼럼] 화학II런하려는 분들에게: 화학II 판독기 3
1컷 50이란 재앙이 펼쳐지는 화학I에서 화학II로 런하려는 분들이 겪는 심리적...
-
살사람 혹시 있냐 싸게 팔건데 초희귀 윤도영 화학1 생2 올어바웃도 있고 진짜...
-
독재니까 n수만 있는건가
-
게이 3
ㄱㅇㅈㅇㄱ
-
저격함 14
전 이렇게 생각하지 않아요
-
생각의 질서풀때 몇몇문제빼고는 다 풀리는데 1회독만하고 다른 유형문제집같은거 안풀고...
-
국어 수학 올린거 보고 ㄹㅇ 인간 승리 같았는데 아깝게 미끄러지신 듯
-
근데 실수 과외생 걸리면 수학 1ㄷ1 질듯..
-
시발점이나 뉴런은 매년 새로 찍어서 올라오나요?? 찾아봐도 잘 못찾겠었어….
-
있나요? 쿠우xx나 애x리는 너무 저퀄이라 좀 비싸더라도 ㅍㅌ이상인 곳 가고싶은디..
-
선넘질받 15
약간취해서 선넘질받도가능 착한옵붕이들 질문해줘요
-
선택과목 바꿀만한 시간이 있을까 지2해보고 싶은데 언미영물2지2 마려움
-
올해 연전전 0
컷 몇 보시나요? 713중반~714 중반이면 가망 있을까요?
-
학창시절에 연애 한 번도 안 해봤네..
-
현역이때 아예 안풀어봤고 위험한 1임 메디컬 노릴거라 영어 1 안정 되야되는데...
-
ㄷㄷㄷ
23.06.30번 문항입니다!
완젼멋져요
고마워요!! 하이샵님 :)
시험지에 그린 그림만 보면 미적분 뺨 후려치는거같은데 진짜 꿀 맞나요????
미적분/기하 모두 장단점이 명확하다고 생각해요..!
기하는 그림이 복잡한 대신 계산량이 현저히 적은 편이에요 :)
대충 10분걸리는 기하문제 기준
상황파악 + 그림 이쁘게 그리기 9분
계산 1분
형님 멋있습니다!!
캬
비쥬얼은 흉악해보이지만, 낯선 문항이 없기에 기하 기출학습이 잘 되어있다면 + 시간만 충분하시다면 편하게 해결하실 수 있을 문항들이에요..!!
고마워요 :)
기하라니 근본있네요
天才
역시 기하는 약연 ㅋㅋㅋㅋㅋ
진짜 기벡 고수 치사토 찬양하기
기“벡”이 핵심일려나
헉
님
고마워요 질감님 :)
마지막문제 역벡터로 풀어도 예쁘게풀리더라고용
27번 그냥 피타 벅벅했는데