엄밀한 수학(1): 구간 별로 정의된 함수의 미분 가능성
게시글 주소: https://m.orbi.kr/00068865526
얼마나 오래 갈 지는 모르겠지만, 고등 수학에서 빈번하게 다뤄지는 몇 가지 주제에 대하여 조금 엄밀하게 다뤄보는 글을 쓰려고 합니다. (주제 추천 받아요.)
엄밀한 수학이지만, 수학을 전공하지 않은 고등학생 정도의 수학 지식을 갖고 있는 분들도 최대한 이해할 수 있도록 써 보려고 합니다.
첫 번째 주제는 [구간 별로 정의된 함수의 미분 가능성] 입니다.
[2021학년도 9월 모의 평가 10(나)]
위 문제와 같이 구간 별로 정의된 함수의 미분 가능성을 묻는 경우, 미분 가능성의 정의보다는 대부분 다음 두 가지 식의 연립으로 해결합니다.
(i)은 [미분 가능하면 연속이다.]의 성질을 이용하여 각각의 식에 1을 대입하여 같다고 놓고 구합니다.
(ii)는 각각의 식을 미분하고 1을 대입하여 같다고 놓고 구합니다.
(i)은 자명합니다. 문제가 되는 부분은 (ii)의 논리입니다. (ii)는 "도함수는 x=1에서 극한값이 존재한다."는 것을 의미합니다. 이를 엄밀하게 규명하기 위해 몇 가지 명제를 떠올려봅시다.
명제1: "미분 가능하면 도함수가 연속이다."
수학을 조금 깊게 공부해 본 성실한 고등학생이라면 위 명제1이 거짓임을 알고 있을 것이고, 또 그 중 대다수는 그의 반례도 알고 계시리라 생각합니다. (단, 그 역은 성립하죠.)
그렇다면 결론부의 조건을 조금 더 약화시켜 생각해봅시다.
명제2: "미분 가능하면 도함수의 극한값이 존재한다."
명제2 역시도 명제1의 반례로 어렵지 않게 거짓임을 보일 수 있습니다.
그럼, (ii)의 등호가 성립함을 보장해주는 근거가 되는 명제는 무엇일까요? 우리는 미분 가능한 함수에 대하여 그의 도함수의 극한값이 존재한다는 것은 알 수 없지만, 최소한 문제 조건으로부터 도함수의 좌극한과 우극한이 각각 존재한다는 것을 알 수 있습니다. 즉, 다음 명제를 생각해볼 수 있겠습니다.
명제3: "미분 가능하고 도함수의 좌극한과 우극한이 각각 존재하면 도함수의 극한값은 존재한다."
위 명제3이 참이라면, 우리의 최종 목적인 (ii)의 논리적 근거를 마련할 수 있습니다. 위 명제3의 참을 설명해주는 것이 바로 다르부 정리(Darboux's Theorem)입니다.
고등학생이 이해할 수 있는 언어를 기반으로 다르부 정리의 내용을 살펴봅시다. (증명은 "Introduction to Real Analysis by Robert G. Bartle"을 참고했습니다.)
다르부 정리 (Darboux's Theorem)
: 함수 f가 닫힌 구간 [a, b]에서 미분 가능하고 k가 f'(a)와 f'(b) 사이에 있을 때,
f'(c)=k를 만족시키는 c가 열린 구간 (a, b)에 존재한다.
즉, 미분 가능한 함수의 도함수는 사잇값 정리의 결론을 만족시킵니다.
[증명]
미분 가능한 함수 g를 다음과 같이 정의합시다.
g가 연속이므로 최대-최소 정리에 의해 닫힌 구간 [a, b]에서 최댓값을 가집니다.
이므로
g는 x=a에서 최댓값을 갖지 못합니다. 이와 비슷하게, x=b에서도 최댓값을 갖지 못합니다.
즉, 닫힌 구간 [a, b]의 경계에서는 최댓값을 갖지 못하므로 최대가 되는 지점을 x=c라 할 때, c는 열린 구간 (a, b)에 존재합니다. 따라서 다음이 성립합니다.
Q.E.D
다시 우리의 원래 목적으로 돌아가서, 위 다르부 정리에 의해 미분 가능한 함수의 도함수가 좌극한과 우극한이 각각 존재한다면 반드시 그 두 값이 같아야 합니다. 그리고 더 나아가 그 지점에서 도함수는 반드시 연속이어야 합니다. 이 명제3을 다르부 정리에 의해 더 강한 조건으로 바꿔 다음 명제4가 참임을 알 수 있습니다.
명제4: "미분 가능하고 도함수의 좌극한과 우극한이 각각 존재하면 도함수는 그 지점에서 연속이다."
처음의 문제에서 f'(x)의 x=1에서 좌극한과 우극한이 각각 존재하므로 위 명제4에 의해서 f'(x) x=1에서 연속입니다. 따라서 (ii)의 등호가 성립합니다!
제 글이 그닥 많은 사람들이 읽지는 않지만 ㅎㅎ;; 개인적으로 정리해보고 싶었던 주제였습니다. 조금이나마 도움이 되셨으면 좋겠습니다. 감사합니다:)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
시대 겨울 단과 0
시대 단과 처음 갈 예정입니다. 미적 개념을 듣고 싶은데 어떤 선생님이 좋을까요?
-
근본적인? 행복은 존재에서 나오는게 아닐까 사람들이 우선 성취에서 기쁨을 느끼지만...
-
얼버기 2
ㅈㄱㄴ 오늘도 화이팅!
-
김민재 골이라니 2
ㅇㄱㅈㅉㅇㅇ?
-
zZ 2
-
기상 완료 드디어 오늘 예비군 마지막날
-
열심히 해보곤 있는데 원래 과탐에 stay 할 것 같네요,,, 십헬과목
-
인듯... 외모관리 중요한듯.
-
선결론) 물2 24.77, 47, 99, 69~70 화2 23.80, 44,...
-
궁금한게 2년뒤 대학에 입학하려면 최소 공군을 5월에 입대해야하는데 커트라인 보니깐...
-
77ㅓ억 간만에 대승이구나
-
얼버기 1
진짜 이른 기상이다 수도병원 가야해 피곤s
-
다 맞게써도 답안이 교수님 맘에 안들면 합격 못한다는거 진짠가여!?ㅠㅠ
-
안녕하세요 고3 정시생입니다 제가 고2 6모때 수학 높5맞고 고2 8월에 정시로...
-
밤샌다매. 12
님들아. 잠 안잘거라매.
-
ㄱ ㄱㄱㄱㄱㄱ
-
Ebs 기준으로 컷예측하고 ebs가 타사이트보다 백분위랑 표점이 널널해서다<< 라는...
-
아짜증남 0
대충 수능 망쳐서 딴 사람하고 비교되어 슬프다는 글썼는데 이런 글쓸시간에...
-
챔스보자
-
섹스
-
95 100 100 100을 성적표 오류라고 100 100 100 100으로 속임
-
기존 로고가 걍 눈알 심볼이니까 1. 눈알 심볼 그대로에 얇은 선으로 날렵하게...
-
전대 정시 0
54363인데 전대 하위과 정시 지원할만 한가요 언매 미적 생윤 사문입니다
-
전 260-280 사이
-
졸리다 2
바바
-
어렸을때 구몬한자 배우면서 사이비가 한자인걸 깨닫고 충격먹었음 이게 무슨 헹가래가...
-
수능끝나면 연락준다고 했는데 아직까지 연락 없는거보면 사이비한테도 걸러진듯...ㅠㅠ
-
예 예 예 예예예 예 예 예 예 예 예 예예예예~
-
가족 제외 전화 포함해서 전 5:5
-
얼버기 4
-
씹덕만 들어와줘 21
이전 프사랑 지금프사 머가 더 나아?
-
애매하게 고대 붙어서 반수하는 것보다 아예 3떨하고 절치부심으로 쌩4수해서 당당히...
-
누가 글좀 써봐 8
나 심심해
-
고뱃은 설캠으로 따려고 안받음 그래야 합격 실감이 나지 않겠음?
-
맨날 들어도 어른들이시거나 또래 남자애들 뿐이었음
-
맞팔하실분 ㄱㄱ 4
저는 항상 잡답태그를 답니다
-
덕코복권 무서운 진실 11
이렇게까지 1등이 안나온 적도 있다
-
MBTI 인증 0
NOW BEFORE INFJ에서 ENFP로 변화
-
너도 내 맘 안다면 ?
-
심심하다 2
배고프다
-
뭔가 전부 50:50 느낌임 중립적인 사람 ㄷㄷ
-
근데 기분 좋음
-
글 1
말 들어드림
-
인터넷 친구긴하지만 여기서 대화하는 분들중에서 친한분 3분이 인프피임
-
혼자 떠들고 있으면 관심을 한몸에 받고 있는 것 같아서 창피함
-
수능준비하면서 살이 너무쪄서 빼야하는데 계속 먹고싶어요 어떡하죠…
-
작년까진 못봤는데
-
설대 내신 0
평반고~ㅈ반고 내신은 몇점대까지 서울대 내신 BB받나요? 공대가고싶은 생각이...
-
참가자 없어서 참가만 하면 10만원 가져갈 것 같은데 기술이 없어서 기초적인...
-
복권돌리지마제발내꺼야 14
제발
슈크란