[칼럼] 올해 평가원이 만지작거리고 있을 패
게시글 주소: https://m.orbi.kr/00069001994
올해 평가원이 만지작거리고 있을 패 - 김지헌T.pdf
김지헌 수학 핏 모의고사 (지헌모) 2025 판매중입니다!!
아래에 칼럼 세 줄 요약 있습니다!
안녕하세요. 올해 오르비북스에서 수학 실전모의고사를 출판하게 된 김지헌입니다.
이번 칼럼 주제는 ‘올해 평가원이 만지작거리고 있을 패’입니다.
사실 이 주제는 제가 3회분의 문제를 출제하면서 가장 많이 고민했던 주제입니다.
평가원이 올해 어떠한 소재를 어떻게 문제에 녹여내어 학생들을 변별하려 할까,
그리고 그러한 경우의 수 중 학생들이 취약한 부분을 대비시키기 위해 난 어떤 문제를 낼 수 있을까.
이번에 문제를 출제하며 나름의 해답을 찾아 이번 칼럼에서 간략하게 소개하려 합니다.
본 칼럼 이외에 추가로 공부해보고 싶은 분들은 배포한 자료를 꼼꼼히 읽어보구, 질문 사항은 댓글로 남겨주세요!
우선 작년 수능에서 가장 난이도가 높았던 22번 문제를 소개하며 칼럼을 시작해보겠습니다.
여러분에게 배포한 자료 1페이지에 22번의 문제가 있으며, 2에서 3페이지에 해설이 있습니다.
해설을 읽고 오신 분, 혹은 충분히 이 문제를 해석해보신 분들이 아래 내용을 읽길 바랍니다.
우선, 박스안의 조건에서 ‘않는다.’를 해석하기 위해 명제의 대우가 참임을 사용하였습니다.
또한, 홀수와 짝수에서 적어도 한 실근을 가짐을 확인하기 위해 귀류법을 사용하였습니다.
이때의 홀수와 짝수가 연속된 정수임을 확인하기 위해 귀류법을 한번 더 사용하였습니다.
나머지 한 실근이 어느 한 실근과의 차이가 1 이하임을 확인하기 위해서도 귀류법을 사용하였습니다.
마지막으로 세 실근 중 중앙값이 0 임을 확인하기 위해서도 귀류법을 사용하였습니다.
이렇듯 이 문제는 어떤 명제가 참임을 보이는 과정에서 고1에 사용되었던 대우증명법과 귀류법을
상당부분 많이 활용한 문제입니다.
수능의 간접 출제 범위인 고1 내용이 이렇듯 많이 나온 것은 우연한 결과가 아닙니다.
평가원은 수능 뿐만 아니라 매년 고2를 대상으로 국가수준 학업성취도평가를 하며,
이때 수능은 9등급제로 학생들의 성적을 나누지만, 학업성취도평가는 4수준제로 학생들의 성적을 나눕니다.
(이때 4수준이 1수준에 비해 개념을 잘 이해한 학생들입니다.)
2020학년도 국가수준 학업성취도 평가의 3번 문항을 봅시다.
이는 배포한 자료 4페이지에 있습니다.
명제 p가 참이므로 모든 학생이 비긴 판이 있습니다.
이때 세 번째 판은 C가 참가하지 않았고, 두 번째 판에서는 승패가 결정났으므로
모든 학생이 비긴 판은 첫 번째 판입니다.
한편 명제 q 또한 참이므로, 어떤 학생은 가위, 바위, 보를 모두 사용하였습니다.
이때 C는 세 번째 판에 참가하지 않았으며, A는 첫 번째판과 두 번째 판에서 주먹을 사용하였으므로
명제 q가 참이 되도록 하는 학생은 B입니다.
따라서 (가)와 (나)는 모두 보에 해당함을 알 수 있습니다.
이 문항을 평가원에서는 변별력이 떨어진다 분석하였습니다.
수능으로 따졌을 때 대략 3등급부터 7등급까지 정답률에서 큰 차이가 없을 문제라는 의미입니다.
반대로 말해 평가원은 명제를 활용한 문제는 난이도를 조금만 높여도 상위권을 변별할 수 있는
문제가 된다는 것을 잘 알고 있습니다.
명제와 관련된 개념은 여러분에게 베포한 자료의 5페이지부터 10페이지까지 잘 서술해두었으니
공부를 해두길 바랍니다.
한편, 2020학년도 국가수준 학업성취도 평가의 5번 문항에서도 이러한 사례를 관찰할 수 있습니다.
(가)는 함수가 아니며, (나)는 상수함수이고, (다)는 일대일함수이므로 정답은 4번임을 확인할 수 있습니다.
한편 이 문제는 오답인 5번 선지를 고른 학생의 비율이 상당히 높은 문제였습니다.
수능으로 따졌을 때 3등급부터 9등급까지 많은 학생들이 동일한 오답을 고른 문제였습니다.
이는 평가원이 함수의 정의를 활용한 문제 또한 난이도를 조금만 높여도 상위권을 변별할 수 있는
문제가 된다는 것을 잘 알고 있음을 의미합니다.
함수와 관련된 개념은 여러분에게 배포한 자료의 12페이지부터 16페이지까지 잘 서술해두었으니
공부를 해두길 바랍니다.
마지막으로 명제의 개념을 활용하였을 때 나올 수 있는 난이도가 높은 문제와
함수의 개념을 활용하였을 때 나올 수 있는 난이도가 높은 문제,
이렇게 두 자작문제를 첨부하였습니다.
두 문제 모두 메인에 갔던 자작 문제이니, 퀄리티는 괜찮을거에요!
(https://orbi.kr/00068554202 / https://orbi.kr/00043683841)
풀어보고 궁금한 점이 있다면 댓글 남겨주세요.
세 줄 요약 )
1. 평가원은 국가수준 학업성취도 평가를 통해
학생들이 명제 또는 함수의 정의를 활용한 문제를 낼 때 조금만 난이도를 높여도 학생들이 잘 변별됨을 알고 있다.
2. 작년 수능 22번 문제가 '명제' 파트에서 어렵게 냈으니 올해는 '함수의 정의'를 낼 수 도 있다.
3. 배포한 자료에서 '명제' 파트와 '함수의 정의' 파트 자작 예시 문제 올려뒀습니다!
여러분이 수능의 신유형을 대비할 때 도움이 되길 바라며 이만 칼럼을 마무리하겠습니다.
좋아요 하나 부탁드려요! 감사합니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
진짜잔다 12
쿨쿨
-
나도 엽사ㅇㅈ 7
깜짝 놀라버린거임뇨
-
감격스럽다 정말
-
응ㅇㅐ나애기 16
진짜임
-
저지금엣지러너노래들음 11
소왓두유원ㅡ
-
라는상상을해봄
-
전대 수시 0
전대 수시 학종 토목 3.84인데 내신 낮은퍈일까요
-
잘생겼을 때 -> 아니 얘가 왜 잘생김? 예쁠 때-> 아니 얘가 왜 여붕이임?...
-
키작고 늙고 병든 대학생인데 어캄뇨
-
ㄹㅇ 처음이면 어케 배워야하지
-
2구간이라 웬만하면 뽑힐것같음 그냥 알바 하지말고 1학기에 저축해둔 돈 쓰면서 살까
-
인증 14
은 ai로 ts한 저였습니다
-
현역으로 수시, 정시 둘 다 하던 사람입니다! 6모때 12122, 9모때 12123...
-
나 서울대 한의과인데 솔직히 우리나라의 주체성을 확립하기위해 의사 면허 전부...
-
인증 9
(삭제) 조럽한개틀딱의성적
-
벌써 작년 경쟁률 1.5밴데 작년 빵이라 그런가?
-
ㅇㅈ 막타 12
전에 한 거 또 하기 펑
-
인증 왜함 9
이미 내 이미지는 밝고 명량하지만 친구관계가 서툰 귀여운 미소녀인데 이건 인증했을때...
-
여자되기빡세다 6
구글에 "여자력" 치면 나옴
-
스펙 평가좀 10
키 40 몸무게 15 연세대 우유빵 공장 재학 수학 goat 강사 세컨 연애 0번 어떰뇨
-
ㅇㅈ 6
장학금 0원 외대 씨발새기
-
반응없을까 무서워서 못하겠음 대신 현역때 성적표 ㅇㅈ
-
인증 9
(삭제) 뉴비투구게 인증
-
그냥이대로~
-
못생겨서 울었어 19
-
기타 배워보려는데 11
코드도 모르는 쌩초보는 통기타로 하는게 맞나요? 베이스나 일렉 해보고 싶은데
-
난 아무리 해도 안 되던데 솔직히 4대역학 너무 어려움.. 나랑 안 맞아
-
아
-
캬 9
-
여자력도서추천 3
책이름이 여자력 이라서 여자력도서추천
-
수능도끝나고 공군 가산점도 받을겸해서 한능검 질문드립니다 한능검 2주안에 1급...
-
배고파요
-
쿠팡신청했다 2
쎄빠지게 일하고와야지
-
그래서누가여르빈데 19
일단나는아닌듯
-
죄다여르비래
-
우제스 사가 떡밥 안올렸나 불편했겠는데
-
나만 여르빈줄 알앗음뇨
-
ㄷㄷ
-
대체 왜 여르비임? 18
을 머릿속에서 계속 반복중 아니 저새1끼마저? 배신감 개쩖
-
전남대 수시 0
전남대 3.84 토목 학종 1차 합격했는데 거의 끝자락일까요
-
왜 들어옴??
-
ㄹㅇ 많늠... 가끔 못 버틸만한 분들도 나옴 그래서 가끔 차단함
-
ㅇㅈ 2
전국 262등
-
맵 진짜 너무 많아졌네... 쓰던 캐릭터들도 퇴물된거 같고 ㅜㅜㅜㅜ
-
ㅇㅈ 10
눈만.
-
수능국어 1컷100 가능?
-
ㅅㄱ
-
내 전남친이 반수해서 15
지방의에서 고대의로 옮긴대...그래서 나도 3수하고싶어졌러
좋은 글 감사합니다! 고1수학 극혐이긴 하지만 참고 공부해봐야겠네요..
혹시 핏 모의고사에도 저런 류의 문제가 실려 있을까요?
함수의 정의를 활용한 예시 문제의 경우, 모의고사에 집어넣기에는 실험적인 문제라 판단했습니다.
하지만 명제를 활용한 예시 문제의 경우, 본 모의고사의 쿠키 문제로 해설지 제일 끝에 첨부되어있습니다.
본 모의고사의 15번, 22번 문항대는 명제를 활용한 예시 문제와 같이 비교적 덜 실험적인 문항들이 많습니다. 학생들이 배워갈 점이 있지만, 동시에 실전성도 대비시키고 싶었기 때문입니다.
자세한 답변 감사합니다! 모의고사 꼭 구매하도록 하겠습니다
감사합니다 ㅎㅎ