아니진짜 왜이렇게 멍청한 애들이 많지..
게시글 주소: https://m.orbi.kr/00069291850
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
마 붓싼대 갈바엔 광명상가 인가경 ! 이라카지 않더냐 마 붓싼대가서 머할라꼬? 마...
-
잘 시간아에오
-
나도 받았다 이넘들아 10
으하하하하하ㅏ하하하ㅏ
-
ㄹㅇ 촌임 밤에 나갔다가 사람보다 고라니 만날 확률이 높을 정도의 촌임 소똥냄새...
-
삼반수 0
2월이랑 학교 다니면서 공부 간간히 할 거고 5월 후반이나 6월 초부터 공부...
-
마 새끼 행님 마 제 기억나시죠 매형 마 내가 잘 될거라 했다 아임니까 마 아구...
-
제사 지내고 잔소리 듣고 낮잠 자고 외갓집 가기
-
그런 실화없나
-
얼버기.... 4
진짜 간만에 푹 잔듯..
-
얼버기 2
즐거운 설명절 보내세요~
-
경제적 여력때문에 대성,메가,이투스 같은 인강사이트는 못 들을 거 같습니다 개념은...
-
결국엔 일곱시군 1
...제사지내고 자야겟네
-
떡국 먹었음뇨 2
저 이제 74살임뇨
-
얼버기 0
-
만약에 100명이 2배수로 들어왔는데 99명은 다 aa나왔고 과탐가산점 없음 나만...
-
난 조앗는데
-
1황
-
자려 했는데 5판이나 했음뇨 어릴 때 주판으로 놀았던 게 도움이 되는 것 같기도..
-
나도 자러감 6
12시 전에는 일어날게 응
-
허어어어어어억 나도 담에 사먹어야지
-
진짜잘게요 6
바이바이
-
유설, 장카로 나눠야 한다고 봄
-
워딩이 헷갈리잖아 인정하죠
-
오늘은 더 안풀어야지
-
이거 때문에 생활패턴 망햇어 세안하기 귀찮단말야..
-
얼버?기? 3
-
확통은 도저히 가오상해서 못하겠더라
-
역시 선택을 잘햇어
-
하이머딩거가 된거같애
-
"경대의대가서 뭐할라꼬 거까지 가노 마. . . 가까운 붓싼대 가서 마 니...
-
제자야 일어나라 9
넵.
-
자야겟다 7
뇌가 쪼그라들고잇어..
-
전형을 건드리는 게 아니라 학사제도 개편으로 해도 되지 않았나 싶은 1학기...
-
전에 올린건데 2
펑
-
설명절 끝 1
집으로 복귀
-
고능해지고싶다 3
능지가너무딸린다...
-
굿나잇
-
심연이더라 난 빡갤이 뭔지 몰랐는데 한석원이 빡빡이라서 한석원갤이 빡갤이라는거임...
-
뇌가 이상항가 12
직선과 평면사이 거리가 최단거리란게 잇을 수가 잇나 그냥 직선이랑 평면이랑...
-
미적 뭉개면서 풀기 ㅁㄴㅇ?
-
새르비 노잼됐어 2
가야겠다 이제 할짓도없는데 수특이나벅벅.. 저능해졌긴 한가봄 스텝3가안풀리는걸보아하니......
-
아니 저 날벌레 색기 10
내가 아까 라이트 훅으로 눕혓는드ㅔ 언제 인낫냐 죽은거 아니엿냐
-
예전엔 보통 수지 아니었나 그 둘로 나뉘는거임? 카리나랑 수지로?
-
개 버러지 집중력이야
-
요즘 볼게없네 추천좀 19
일본애니안받음 심슨 숏츠로뜨는거보니까 좀 흥미생기는데 그거하나보자고 디즈니플러스...
-
베르테르 14번 푸리 10
3점인 ㅇ이유가 있네
-
섹스 12
아 입구컷이네 너무해….
-
2트 14
몬가 오르는데, 각 잡고 해볼까 ㅋㅋ
나도 전적으로 동의함!
모순 : p,q 명제가 동시에 참일 수가 없다.
p : true / q : false
p : false / q : true
거짓은 그냥 false
둘이 필충이 아닌데요
아니 본문식이 틀렸냐고요
모순<->(p and not p)<->거짓
도대체 이게 뭐가틀림?
모순명제의 진리값이 거짓인건 맞는데, 거짓이라고 무조건 모순명제인 건 아니라서
p and not p -> 거짓
이 맞는 것 같아요
(p and not p)의 값이 거짓이니 거짓과 동치라는거임
1. 진리값은 명제가 아니기 때문에 모순명제와 거짓을 동치라고 볼 수 없다.
2. p and not p라는 모순명제의 진리값이 거짓이기 때문에, 그것의 부정인 무모순명제의 진리값이 참이 되는 것이다.
저는 이렇게 이해했습니다..!
명제(命題, proposition)란, 참이거나 거짓인, 즉 진릿값을 갖는 것을 말한다.
명제의 정의는 진리값을 가지는것이기 때문에 "거짓" 자체가 명제일수있음
"false"도 명제라고 할수있어?
ChatGPT의 말:
ChatGPT
네, "false"도 명제라고 할 수 있어. 명제는 참(true) 또는 거짓(false)을 나타낼 수 있는 문장을 말하는데, "false"는 그 자체로 거짓인 명제를 의미해. 다시 말해, 명제는 그 값이 참이든 거짓이든 상관없이 하나의 논리적 단위로 취급돼.
참여하지 말고 지금 도망가세요
시간만 뺏깁니다
헉 넵...ㅠ
내일 금요일(2018.08.24)은 태풍으로 학교 임시휴업일입니다.
등교에 참고해주세요. 참고로 담주 월 7교시(과학)합니다.
비추버튼입니다!
진리값을 갖는 거지, 진리값 그 자체가 명제는 아니니까요
"false"도 명제라고 할수있어?
ChatGPT의 말:
ChatGPT
네, "false"도 명제라고 할 수 있어. 명제는 참(true) 또는 거짓(false)을 나타낼 수 있는 문장을 말하는데, "false"는 그 자체로 거짓인 명제를 의미해. 다시 말해, 명제는 그 값이 참이든 거짓이든 상관없이 하나의 논리적 단위로 취급돼.
아니요, 진리치는 명제가 아닙니다. 진리치는 특정 명제의 참이나 거짓을 나타내는 값이며, 독립적인 문장이 아니기 때문에 명제의 정의를 충족하지 않습니다. 명제는 참 또는 거짓으로 평가할 수 있는 문장을 의미합니다.
chatgpt는 믿을게 못 됨
명제(命題, proposition)란, 참이거나 거짓인, 즉 진릿값을 갖는 것을 말한다.
그렇다면 진리값을 가진 "거짓", "참"도 명제아님?
거짓은 어떤 진리값을 가지나요? "A는 거짓이다" 라는 문장은 진리값을 가질 수 있지만 그냥 "거짓"이라는 문장은 진리값알 가질 수 없고 애초에 문장도 아닌 것 같습니다.
P&~P가 (p and not p)이고
F가 거짓입니다.
P&~P↔F와 (p and not p)<->거짓은 같은 논증입니다.
(T and F)->F 같은건 뭐임?
저는 그러한 논증은 아직 본 적이 없는데 어디에서 보셨는지 말씀해주실 수 있나요?
외국사이트에서요
제가 아는 선에서는 T,F는 명제가 아닌 걸로 알지만 T, F도 명제라고 가정한다 했을 때 T, F는 어떤 의미를 가지나요? 아무런 의미를 가지지 않는다면 명제 T, F에 대한 논증자체가 불가능할 것 같습니다.
T는 true고 F는 false죠
'푸르다'라는 서술어는 그자체로는 의미를 가지지 않잖아요. '하늘이 푸르다.'처럼 주어와 결합하여 문장이 되어야 의미를 가지게 됩니다. 그런 것처럼 'T', 'F'도 'P는 T이다.'처럼 어떠한 명제 P를 주어로 결합해야만 의미를 가지는 것으로 알고 있습니다. '참이다.'라는 것 만으로는 아무런 의미를 가지지 않는 것 같습니다. 이러한 점에서 'T', 'F'는 아무런 의미를 가지지 않는 것 아닌가요?
T는 true의 약자고 TRUE는 말그대로 참이라는 의미라고 생각함
무엇이 참이다 가 아니라, 그냥 "참" 이라는거임
P&~P↔F
이 논증은 참이 맞는 것 같습니다. 이때 위 논증의 의미는 P&~P라는 명제가 거짓이라는 의미입니다. 위 명제의 대우는
~(P&~P)↔T
당연히 위 명제도 참입니다. 이때 위 명제의 의미는 ~(P&~P)라는 명제가 참이라는 뜻입니다. 위 논증은 무모순율과 다를게 없습니다. 무모순율이 성립하면 당연히 성립하는 논증입니다.
다만 위 논증은 '어떠한 공리계에서 P가 참이라고 가정했을 때 공리계가 무모순이라면 P는 참이다'라는 의미는 가지지 않습니다. 위 논증은
~(P&~P)→P
라는 다른 논증이니까요
제논증은 모순<->(p and not p)<->거짓 인데요
~(P&~P)↔T 이게 비모순(무모순)이면 참이고, 참이면 비모순이다 아닌가요
~(P&~P)라는 명제가 참이라는 의미입니다.
T와 동치라면서요
P↔T가 참이라는 것은 두 명제의 진리값이 같다는 의미이고 이때 T는 항상 참이니 P도 항상 참이여야합니다. P가 참이면 위 명제는 참이고요. 따라서 위 명제의 의미는 'P는 참이다'입니다.
~(P&~P)↔T 이게 비모순(무모순)이면 참이고, 참이면 비모순이다 아닌가요
맞습니다
역시 옳은 말은 쿠쿠리
세상의 진리를 모조리 파악하셨네ㄷㄷ
님 틀린 것 같아요
이런글 너무 많이 올리지 마세요... 그러다 정신병 도지심
물어볼 거면 제대로 물어봐라
모순<->(p and not p)<->거짓
냐고 물어보셈
애초에 모순 ↔ 거짓이 안 된다고
모순<->(p and not p)<->거짓 라는 식이 맞냐고 물어보셈
아니 님이 뭔짓을 해도 모순<->(p and not p)<->거짓 라는 식은 참이라니까요
그렇게 물어본 게 저거라고 아오
아니 님이 뭔짓을 해도 모순<->(p and not p)<->거짓 라는 식은 참이라니까요
ㅂㅅ 그렇게 사세요 니가 그렇게 좋아하는 gpt한테 조금만 물어봐도 아닌 걸 알텐데 ㅋㅋ
그럼 나는 안물어봤음?
저 서울대 의대생인데 님말이 타당한 지적이라고 생각해요 !
니 말을 gpt가 제대로 이해한 게 아니라고