합성함수 인식부터 치환적분까지
게시글 주소: https://m.orbi.kr/00069306012
문제 같이 읽어보겠습니다.
뭔가 그림 그리고 싶다는 생각이 듭니다.
이 정도로 그리면 되겠습니다. 노란색 동그라미 친 건 미분계수입니다.
문제를 마저 읽어볼게요
아, f(x)가 아니라 f(2x)래요. 그것도 그려줍시다.
x=1에서 미분계수가 2인거 바로 보이시나요?
이쯤에서 잠깐 딴 얘기로 샜다가 돌아오겠습니다.
(딴 얘기)___________________________________________________________________________________
이건 cos함수에 5x를 합성한 함수입니다.
5x는 x보다 다섯배 빠르게 진행되기 때문에,
cos5x 함수는 cosx 함수에 비해 모든 대응되는 구간에서 다섯배 빠르게 변합니다.
미분계수가 다섯배인 셈이죠.
또 다섯배 빠른 진행속도 덕분에, 함수는 다섯배 축소됩니다.
(딴 얘기 끝)________________________________________________________________________________
이런 이유로, 앞선 문제에서
이렇게 그릴 수 있던 겁니다.
이제 문제 마지막 부분 읽어볼게요.
음.. 이건
f(2x)의 그림만 보고 a는 1이고 b는 1/2이라고 읽으면 됩니다.
긴 설명 대신 그림 2개면 충분할 겁니다.
함수 그림은 냅두고
x, y 축만 샥 바꿔주면 됩니다.
우리가 잘 알고 있는
이 사실을 수식적으로 이해해도 좋지만,
저는 때에 따라 조금 더 기하적인 느낌으로 이해합니다.
이렇게 말입니다.
앞선 예시도 이런거였죠.
하지만 이 얘기는 f(x)와 f(3x)처럼 단순히 일차함수를 합성했을 때만 쓸 수 있는 얘기가 아닙니다.
다음 문제로 넘어가봅시다.
지수함수 f(x)에 대해 다음 값을 구해야 하는 상황입니다.
가독성을 위해 엄밀하게 적지는 않았지만 다 이해하셨을거라 생각합니다.
일단 절댓값 f(x)부터 그려봅니다.
-1에서 미불이고, 이때 오른쪽 미분계수는 ln2입니다.
이제 어떤 빨간 점이 이 곡선경로를 쭉 따라간다고 해봅시다.
이 빨간점은 y=x세제곱 함수의 속도로 곡선경로 위를 움직이는 중입니다.
y=-1일 때, x세제곱 함수의 미분계수는 3입니다.
따라서
여기 -1 부근에서 빨간점은 경로를 3의 속도로 지나가는 중입니다.
아까 문제에서 h'(a+) 구하라고 했었죠.
3의 속도로 기울기 ln2인 구간을 지나는 중이니까 답은 3ln2입니다.
근데 삼차함수에다가 대고 막... 속도 개념을 부여해도 되는걸까요?
또 잠깐 딴 얘기로 샜다가 올게요.
(딴 얘기22)___________________________________________________________________________________
아까 cos 5x는 진행속도가 일정한 경우였습니다.
그런데 진행속도가 일정하지 않을수도 있습니다.
(예전에 제가 썼던 칼럼 일부를 인용해왔습니다)
앞서 언급했던
이 사실이 이러한 이유로
이렇게 인식될 수 있는 겁니다.
시간 있으신 분들은 아래 기출 문제 풀어보세요.
귀찮으면 넘어가시구요
답은 19+20= 39입니다.
알려드린 걸 통해 풀면 인식하기가 훨씬 쉬울겁니다.
(딴 얘기 끝)________________________________________________________________________________
아직 할 얘기가 많이 남아있습니다.
합성함수 인식은 결국 치환적분의 얘기로 이어집니다.
다만 이번편에 다 쓰면 너무 길 거 같아서, 다음 편으로 넘길게요.
좋아요랑 팔로우 누르고 기다려주시면 곧 돌아오겠습니다 ㅎㅎ
0 XDK (+10)
-
10
-
내가 진짜로 수능을 쳤고 목표를 못이뤘고 시간을 날렸구나
-
1학년동안 진짜 정신 없이 흘러가네..
-
멋있는척 1
1단계 눈총발싸
-
서울대 합격기원 3일차 음 다들 더 좋은 곳으로 빠지겠죠?
-
공대 갈 예정인데 물1,물2 중에 알고 가야할 단원(?)이 있을까요? 완전 노베는...
-
아기 현역 달린다.
-
수학 커리 조언 2
수학 2-3 왔다갔다합니다. 내년 수능을 다시 보려하는데 어떤거부터 해야할지 감이...
-
그러면 거짓말한거 들키잖아
-
언매 미적 영어 생 지 생 지 둘다 백분위 100 나올듯? 생1은 99나올수도?
-
지2 그래도 6
하다보면 재밌을 것 같음
-
징징대는거받아주면기분좋더라
-
이거 ㄹㅇ 충격이네
-
지듣노 4
https://youtu.be/vLigCJOcHOE?si=ihP_T_IloXPKGds...
-
대체 연계 적중 << 이런 말같지도 않은 얘기에 왜 현혹됨? 0
'내가 힘 줘서 공부 안 한 연계 작품이 수능에 나오면 어떡하지?' 이런 불안감을...
-
바텀에서 7킬 카이사가 올라오는데... 아 솔랭 안하는게 정신에 이득일듯
-
배가안고프구나
-
ㅠㅠ 노베 0
노베 내신 현역 수능 7등급이였는데 계획안이에여 검토 해주세여 국어 김승리 이번에...
-
논술 유출로 말 많았어도 보내준다면 갈사람은 한트럭일텐데
-
1) 공통, 기하 공부비중 어떻게 하셨나요 2) 기하 컨텐츠 부족 체감 많이 하시나요
-
원래 무료임? 왜 그냥 노래 다운이 됨?
-
님들 급함 투표 좀 20
체유카 7분의1 사이즈 피규어VS호시노,아루 넨도로이드 가격은 후자가 3만원 싸고...
-
자기 손 안 더럽히고 꿀 빨 수 있는건데 왜 뭐라 하겠냐 민주주의의 허점임
-
1번 빼고 답 이상하게 내서 못외워가게 만듦
-
바뀐 나이로 29살/원래는 30살(95년생) 입니다. 메디컬 목표로 2년 잡고...
-
기이이이이상 2
-
1번 최대 64 최소 -360 2번 77/27 3번 최대 13 최소 2 이렇게 답...
-
??
-
중대 자연2 3
기하 격자점 뭐냐?????????
-
구라고 알바생 분이 커페라떼에 피크민 그려주심 근데 내가 개...
-
ㅠㅠ 3-1 ln 부분분수 쪼개고 부분적분 하다가 끝남 ㅠ
-
가체점 쓰기 힘든데 아날로그 카메라<<이새끼 안됨? 4
진짜 진지하게
-
그만둬야지
-
수학과 3
확통 비중 큰가요? 미기는 할 줄 압니다
-
궁금해오
-
재수할까... 0
가천대 논술 준비하고 있는데 가천대 가고싶지도 않고.. 수능이 모고보다 너무...
-
안녕하세요. 이번에는 2025학년도 기회균등전형 정시 모집 인원에 대해...
-
2022학년도까지는 풀만한데 2023학년도부터 엄청 빡빡한 느낌
-
한양대 인터칼리지 수리 3문제 쉽게 나온게 맞지요? 140ㄷ1 이던데 3합7...
-
중대 면접 갈지 정해야 하는데 서성한 되면 최대한 안가고 싶은데 서성한 아무과나 될...
-
존나 딴딴하다가 궁쓰면 페이즈2 열려서 존나쎄짐 시발
-
질문글들에서 뉴비냄새남 맛잇다
-
리본 뉴런 0
리본 현강 다니면서 뉴런 하루에 2강씩 듣는거 어떤가요?
-
공학으로바꾼다고 하면 다들 찬성하지 않을까? 동덕여대에서 각잡고 민형사걸면 54억...
-
ㅇㅇ 낮과쓰지말고 설경쓰셈 낮과는 개폭각 ㄴㄴ
-
그랬구나..
-
확통공부를하겠다 2
취미로
-
난 군필이라 그런진 몰라도 공익들보면 한심한거 나만그럼? 26
나도 군필이고 군대 다녀왔지만 공익은 사실상 면제나 다름없는듯 그리고 군인은 진짜...
-
서강대 유럽문화학과 떨어진 사람이 고려대 반도체학과 붙었고 꼴등 성적이 건국대 공대 성적권이였음
-
. 2
문득 내 인생은 어디로 가는 중일까 생각이 드네욥 그나저나 배터리 2퍼 남았네.. ㅎㅎ
-
28 30 뚫는 재미가 남다름 공통은 22 하나밖에 없는데 미적은 2개잖아 럭키비키
오 cos2x 같은 일차항의 계수만 달라져서 합성된 상황만 x축 방향 축소로? 알고 있었는데
이차함수같은 게 합성되어 있어도 되는 느낌이네요
특정한 한 지점에서는 이차함수도 지수함수도 직선으로 근사할 수 있기 때문이라고 생각해도 되겠습니다
무민은좋아요
라끄리식수학적사고ㄷㄷ
https://orbi.kr/00064989284
그동안 쓴 칼럼 리스트입니다. 필요하신 분들 참고하세요
진짜 좋은 칼럼
우와...
식으로 파악하던걸 가시화해주네요
간단하보이지만 누군가 이런걸 정리해주지 않으면 써먹기 쫄리던데 감사합니다!
신기방귀
f(x)를 g'(x)의 속도로 지나가고 있다고 해야 맞을듯
g(x)의 속도 (=g’(x) )로 지나간다는 의미였습니다.
저도 둘 중에 뭘 쓸까 고민했어요
말씀해주신 것처럼
g’(x) 의 속도라 해야 와닿는 거 같기도 하네요
좋은 지적 감사합니다 ㅎㅎ
그러면 "g(x)와 같은 속도“는 어떤가요?
합성함수기울기=각위치 겉속 기울기의 곱
엔축공부하면서 떠올렸던 건데
속도개념으로 볼수도있군요!
goat...
와 제가 이해한방식이랑 거의 유사합니다
정돈된 버전?
남들한테 퍼지는게 아까운 수준의 글이네요
딴얘기, 딴얘기 끝이라고 표현해놓은게 왜이리 귀엽게 보이지ㅋㅋ 잘봤습니다
저 다 봤어요 이제 내려주세요
개추
좋은칼럼 잘보고갑니당