책참 [1020565] · MS 2020 (수정됨) · 쪽지

2024-11-12 20:03:01
조회수 733

미적분 출제 예상 (4)-1 및 분석

게시글 주소: https://m.orbi.kr/00069883437

g(k+1)은 p에 대한 일차함수였습니다.










선분 AC의 길이를 선분 AB의 길이로 나눈 것은 t에 대한 함수이고,


그 도함수는 부호에 영향을 주는 부분만을 고려할 때 t에 대한 일차함수였습니다.










함수 y=g(x)의 그래프와 x축으로 둘러싸인 영역의 넓이는


t에 대한 함수이고, 그 도함수는 t에 대한 오차함수였습니다.







주어진 집합의 원소 중 정수인 것의 개수는


k에 대한 함수였고, 실수 전체의 집합에서 감소하지 않습니다.








함수 g(t)는 t에 대한 삼차함수였고,


상수항은 k에 대한 함수였습니다.








n번째 항으로부터 (n+1)번째 항이 도출되는 방식이 일관되기 때문에


k=n-1일 때, 첫째항을 제외하고 처음으로 0이 되는 항이 (2n)번째 항임을 발견하면


0이 되는 항의 규칙을 확인할 수 있습니다.



간격은 2n-1이니 {2n-1} : (1), 3, 5, 7, 9, 11, 13, ... 꼴이었습니다.








닫힌 구간 [1, 2]에서의 적분값을 물었으니


함수 f(x)가 x=1에서 미분가능함을 통해 a, b값을 찾아주면 되었지만


닫힌 구간 [3, 4]에서의 적분값을 물었어도


차분하게 나열하여 규칙을 파악하는 것이 필요했습니다.









구간 [0, n]에서 함수 xg(x)를 적분한 것은


어떤 일차함수의 첫째항부터 n번째 항까지의 합이었습니다.







적분 구간이 [홀수, 홀수+1]이냐 [짝수, 짝수+1]이냐만 확인해주었으면 되었습니다.








x=1, 4, 9, 16, ... 이면 f(x)=1이고


x=1, 4, 9, 16, ... 이 아니면 f(x)=3이었습니다.







낯선 식이지만 정리하면 익숙한 식


또는


규칙성을 활용하면 단순하게 정리할 수 있는 상황






ㄴ 240913 변형)




ㄴ 221121 변형)




ㄴ 220914 변형)



0 XDK (+0)

  1. 유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.


  • 첫번째 댓글의 주인공이 되어보세요.