[신성고] 수학2 기말고사 손풀이 + 해설 영상
게시글 주소: https://m.orbi.kr/00070236092
안녕하세요. 수학의 판도를 바꾸는 Math Changer 어수강 박사 (과천 "어수강 수학" 원장)입니다. 오늘은
[신성고] 2023년 2학년 2학기 수학2 기말고사 손풀이 + 해설 영상
를 포스팅 하도록 하겠습니다.
PS. 신성고 학생이 아니더라도 시험 준비에 크게 도움이 될거라 생각합니다.
1 페이지는 무척 쉬우므로 해설은 생략합니다.
2 페이지도 무척 쉽지만 코멘트 하나만 할게요!
[6번 문항] 평균값 정리가 상당히 유용한 정리임에도 이와 같이 무의미한 형태로 출제되는 것이 상당히 안타깝습니다. ㅠ_ㅠ
이제 3 페이지를 볼까요?
[10번 문항] 미지수가 2개 (a와 f(x)의 상수항)이므로 등식을 2개 이상 얻어내면 되겠죠? 주어진 식의 양변에 x=0을 대입, 주어진 식의 우변을 적분한 후에 x=a, x=1을 대입하면 계산 문제가 될 것 같네요!
위와 같은 풀이도 당연히 가능하지만, 조금 더 계산이 간단하면 좋겠죠?
저는 함수의 그래프를 이용하여 방정식 f(x)=f(a)에서 x=a가 삼중근임을 알아낸 뒤, 인수정리를 이용하여 가볍게 풀었습니다. 시험에서 이와 같은 풀이를 찾아낼 수 있다면, 시간 절약은 물론 실수할 가능성도 크게 낮출 수 있겠죠?
고등수학에서는 복잡한 것을 그대로 계산하는 것은 학습목표가 아니므로 "복잡한 것을 간단히"하는 도구 또는 아이디어에 초점을 맞추고 공부할 것을 강력하게 권장합니다!
[11번 문항] [12번 문항] 문제에 주어진 조건에서 원하는 것을 얻어내기 위해 한 단계 한 단계 차근차근 풀면 그리 어렵지 않습니다. (feat. 삼단논법!) 이때, 문제의 포인트는 미지수가 a, b 두 개인데, 등식이 하나라는 것이겠죠?
미지수의 개수를 줄이거나 식의 수를 늘려야 하는 상황입니다! 저희 수업에서는 이런 상황에 대처할 수 있는 방법을 매 시간 강조하고 있는데요. 이 문제의 경우, 모든 항의 차수가 같으므로 양변을 하나의 문자로 나누면! 분수식(a/b 또는 b/a)을 하나의 문자로 볼 수 있게 됩니다!
그 뒤론 쉽게 풀 수 있겠죠?
이제 4 페이지를 볼까요?
[13번 문항] 주어진 등식으로부터 f(x)가 삼차식임을 알아낼 수 있다면, f(x)의 계수를 문자로 두고 풀면 되겠죠? 하지만 연속함수 f(x)에 대하여 f(x+1)-f(x)가 이차식이라고 해서 f(x)가 삼차식이라는 것을 배운 적이 없기 때문에 주의해야 합니다. 서술형이라면 크게 감점되겠죠?
구간의 길이가 1/2, 1인 정적분 값을 이용해서, 삼단논법으로 주어진 것에서부터 구하는 것으로 차근차근 나아가면 쉽게 풀 수 있습니다! 자세한 풀이는 해설 영상을 참고 해주세요 :)
[14번 문항] 원의 넓이를 시각 t에 대한 식으로 나타내면 되겠죠? :)
[16번 문항] 직접 계산은 너무 복잡하네요! 저는 근과 계수의 관계를 이용해서 간단히 풀었습니다 :)
마지막으로 5 페이지입니다.
[17번 문항] 교점의 좌표를 문자로 놓고 식을 세우면 되겠죠?
[18번 문항] 그래프의 대칭성 & 인수정리를 이용하면 간단히 풀 수 있겠네요! [11번], [12번] 문항과 마찬가지로 a, b에 대한 4차식에서 모든 항의 차수가 4차로 같으므로 양변을 a의 네 제곱으로 나누면? (b/a)를 한 문자로 볼 수 있겠죠? :)
[19번 문항] 그래프의 개형을 이용하면 쉽게 풀 수 있습니다. 이때, 사람 손으로 그리는 그래프는 컴퓨터처럼 정확하지 못하기 때문에 기준을 설정하는 것이 중요하겠죠? 이 문제에서는 원점에서의 미분계수(혹은 좌미분, 우미분계수)가 y=h(x)의 기울기의 관계에 초점을 맞추는 것이 중요합니다.
[18번]. [19번]의 자세한 풀이는 영상을 참고 해주세요!
[20번 문항] 연속 조건을 이용해서 함수 f(x) 및 k의 값을 알아내면 되겠죠? 이후 넓이를 t에 대한 식으로 나타낸 후 풀면 됩니다. 이때, t의 값이 0보다 크고 6보다 작은 양수일 때, 넓이를 구해야 하는 도형이 하나의 삼각형이 아니라, 삼각형 3개로 이루어진 도형이라는 사실에 주의해야 합니다.
그리고 이때 S(t)를 식으로 나타내면, S(t)가 미분가능하지 않기 때문에 출제 오류임을 알 수 있습니다. (손풀이에서는 출제 의도대로 답을 냈지만, t=6에서의 좌미분계수는 양수, 우미분계수는 음수가 되므로 모순입니다!)
[18번 문항] 해설 영상입니다.
[19번 문항] 해설 영상입니다.
지금까지
[신성고] 2023년 2학년 2학기 수학2 기말고사 손풀이 + 해설 영상
를 포스팅 해보았습니다.
특별한 아이디어나 발상을 요구하는 문제는 없지만 전반적으로 쉬운 시험은 아니라 생각되네요. 배운 것에 근거해서 문제를 분석하는 과정을 생략하고, 경험이나 느낌에 의존해서 손 나가는데로 풀면 계산이 너무 복잡하거나, 잘못된 방향으로 가다가 시간만 뺏기고 답을 내지 못하는 문제가 많을거라 생각됩니다. 시험에서 이렇게 되면 멘탈도 흔들리게 되므로 점수가 폭락할 가능성이 높습니다.
반면, 배운 것에 근거해서 차근차근 문제를 분석한 후, 차근차근 풀면 (특별한 아이디어나 발상을 요구하는 문제가 없기 때문에) 무난한 시험이 될 것 같습니다. 그러니 항상 기본에 충실하기 바랍니다.
2. 거의 모든 고난도 문항에 즉각 적용 가능한 치트키 2 : https://orbi.kr/00062194726
3. 문자의 개수 vs 식의 개수 (feat. 연세대) : https://orbi.kr/00064497772
4. Double Counting Method : https://orbi.kr/00068374111
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
오늘은 여기서 끝. 10
나의 정체에 수많은 물음표를 달고 있을 그대들에게 안녕을. 꿈에서 만나.
-
샤 3
인 미 N 제 깔 깔
-
이거레알
-
기차지나간당 17
부지런행
-
반수 망하고 나군에 지금 학교(부산대/경북대) 하나 넣었음 이때도 낙지랑 이것저것...
-
라떼는... 0
점심 시간 때 나야나 음악 방송으로 맨날 나오고 그랬어
-
물론 2학년때부터 하루 4-5시간씩 했다는.... 고3때는 최소 11시간
-
102%정도 차지중이야
-
나 진짜 문찐인게 17
소녀시대 빅뱅 gd 티아라 트와이스 태양의 후예 해품달 등등 드라마는 본적 없고...
-
그거 보고 몇일 뒤에 재수하는친구 카톡프사가 오르비에 올린 인증사진으로 바뀐적 있음...
-
ㅇㅋ 진짜 변명 25
내가 프랜차이즈 카페를 잘 안 가서 그런 거임 나 보통 편의점 가서 레쓰비 마심 ㅇㅇ
-
아 목 아파 3
물 2000리터 마셔야지
-
오오삼이라고 불러 그럼 오우삼 아님 주의.
-
ㅇㅈ 10
-
학교 담임 쌤이 점심 시간 때 노래 틀어주곤 했음 초딩 때 애들 다 아이즈원이나...
-
저는 경제학과에요 19
근데 이것은 사실일까요
-
모솔임
-
뭐해야할지 모르겠어서 걍 롤체 하는 중 그냥 처음부터 다시 할까
-
밝은옷이 잘어울림 하늘색같은거
-
논술 학원 1
대구에 논술 학원 추천 해주세뇨..
-
한명제꼈다 야호
-
사람은 참 간사함 12
직년에 00대면... 어느 과나 가지 하던 난데 막상 안정이 뜨니 안 행복함. 더...
-
내가 스벅을 안 가 ㅇㅇ
-
대치 시대 대기 0
안가람t 공통 대기 걸었는데 200번대라고 하시더라고요 3월전까지 빠질 수 있을까요?,,
-
으휴 소통 단절하는 mz들
-
메가고 시대고 왜 일을 안하나 했네 이제 월요일이 된 거구나
-
열등감때매 강의 못 보겟음
-
나는 반모를 안다 ox 21
ㅇㅇ
-
작가 사람아니야 ㅠ
-
1. 가정 불화 2. 못생김 3. 약속 잡을 용기 없어서 성인 되는 새해에 혼자...
-
뭐지다노
-
이쁜 짤 좀여 9
3D
-
ㅈㄱㄴ
-
반수학과다.
-
씹어먹어도 되나요? 이미 먹고 물어보는거긴 함
-
돈 들어 (사실 동물을 별로 안 좋아하는 거긴 함)
-
2시네 0
이제 일어나야겟네..
-
너무 많으면 중간에 끄늠 ㄱ
-
껄껄껄
-
https://link.yeolpumta.com/P3R5cGU9Z3JvdXBJbnZp...
-
Odoriko
-
ㅇㅈ메타 참전 0
근데 이제 고양이 ㅇㅈ
-
상향? 1칸 1
오르비에서는 1칸 스나라고 하던데 질문드려요 1. 가 ,나 ,다군에서 유불리가...
-
으아
-
그래서 커뮤용어 모른척 할 예정임뇨…
-
진학사보단 고속이 나음
-
현재 진학사 4칸. 등수는 571. 성적은 656.13인데추합 가능할까요?
-
썡 노베에서 재수했습니다 이 성적이라면 어느정도 대학을 지원하는게 좋을까요 과에...
첫번째 댓글의 주인공이 되어보세요.