회원에 의해 삭제된 글입니다.
게시글 주소: https://m.orbi.kr/00070803811
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
어라? 솔직히 사람들이 힘들어서 그렇지 배타는 건 너무 좋은데 걍 사관학교 하나 보고 달릴까?
-
이제 내가 성평에 서겠다
-
언급을 본 적이 없네
-
경평 ㅋㅋ 2
ㄹㅇ 충격적
-
인서울 상위권이라 하면 12
보통 어디를 말함?
-
잘몰라서 알려주세요 ㅠㅠ
-
저도 재수하면서 질문 받는 고인물 코스프레 해보고 싶음
-
2, 3단원 그냥 증발함 ㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ 그와중에 6단원도 증발하는중임 ㅆㅂ
-
메가스터디 0
단과 강좌 없어졌나요? 7일 수강권만 뜨는데..
-
얼른 1지망으로 가버려라 흡
-
머리 좋다가 대부분 의대로 귀결되네...
-
좆드릴 3
뚫기
-
안경의 장점 27
0. 갓경임 1. 폰이 얼굴로 떨어질때 눈을 보호해줌 제가 방금 경험했어요
-
자기 잇속 챙기는 일에는 대통령 거부권 “해줘“ 전공의 처단 포고령에는 “몰?루?“ GOAT
-
현명하다 부럽다 말고 말 그대로 머리좋다 기준 전 갠적으로 영재교졸/과고조졸 후...
-
중대 심리 진학사 등수 낮았는데 앞 사람이 더 높은 학교 문과나 중대 경영 같은...
-
올오카 안하고 테이리부터 하려하는데 그동안 할만한가요?
-
분명히 했던 것 같은데
-
19살 자퇴생인데 현역된 기념 열심히 하려고 기숙에 들어왔는데 (20일 정도 지남)...
-
수능 전에 마저 못푼 n제 한문제씩 푸는중 수2 개형추론 ㄹㅇ 재밌음 너무 어려운거...
-
연대 발표 하루쯤 전이겠다 싶으면 열어볼래요 너무힘들다
-
고사양 게임 즐겨하는편이라 게이밍 노트북으로 사려하는데 대학교 과제나 활동할때...
-
26 수능 목표 11
화통정생으로 고의 쟁취하기 만점이면 될 수도 있잖아
-
합격증이랑 수능 성적표만 가지고는 ㅂㄱㄴ할라나
-
전역 언제 하냐.. 11
-
인증 없으면 구라라니깐뇨
-
볼캡 사려고 하는데 몇개가 적당할까 한개는 있구 2개 살지 3개 살지가 고민임요
-
재수하면서 걸어둔 학교로 돈벌기 ㅎㅎ
-
수성 트럼프 월드 살면ㅅㅌㅊ인거임뇨?
-
행복하길 바래 9
에서 바래는 틀린 표현이며 바라가 와야 표현이 맞습니다 네 밥 묵으러 갑니다 ㅎ.ㅎ
-
T1) 2025 LCK CUP에도 T1 ZONE에서 함께 응원해요! 1
출처) T1 Instagram @t1lol
-
수능은 미적인데 확통은 내신땜시 챙겨야함니다 수(하)에서 특히 경우의수나 순열조합은...
-
성적 몇 점대까지 뚫릴 거라고 보시나요? 생명과학부, 생명공학부, 화공생명공 진학사...
-
왕 0
시작
-
수능 만점 받기
-
23입시 때 05조졸러들은 꽤 봤는데 24입시 때 06조졸러는 아마도 못본거같고...
-
수학,영어 올해 해야하는것 탐구고정1-2후만들기
-
ㅈ됐다 0
또 아직 한끼도 안 먹었어
-
영어 인강 추천 1
영어 인강 추천 해주세요. 작년 기준 6평 3 9평 2 수능 3 입니다. 원래...
-
아 0
자버렸다 공부 안해
-
내가 하는 건 ㅈ노잼이었는데 남들꺼 보는건 개꿀잼이에요 이러다 26 27 입시도 관전할수도
-
지혁쌤갔는데 강사 안뽑으려나
-
안들어오니까 괜히 기대하게되잖음 안될건 앎..
-
이미 재종담임한테는 합격증 다 넘겼는데 특정과목쌤이 자꾸 연락오심 답장안했는데 연락...
-
.
-
지금 고 3인데 시발점 수 1 은 끝내고 수 2 듣고있어요 노베 공통수학 풀으라고...
-
완전군장 괜히 함 13
아직도 허리가 아프다 발목도.. 발바닥도..
-
아시발 4
지금까지 지퍼 내리고 밖에 돌아다녓네
-
원서영역 9등급
-
궁금해졌음
다음곡선 ~~가 위로 볼록한 구간에 속하는 실수 x가 아닌것은? 이랑
곡선~~~이 실수 전체의 구간에서 아래로 볼록할때
이런 두문제가 있는데 첫번ㅁ재ㅜ 문제풀때는 f"(x)과 0 관계를 볼때 =이 안붙고 두번째 문제 풀때는 =이 붙는 이유를 모르겠어요ㅠㅠ 두 문제 질문에서 뭐가 다른게 있나요?
질문이 잘 이해가 안됩니다
앗 다른분께도 질문했던거 복붙해서 쓰느라 그러네요ㅠㅠ
지금 위의 저 사진처럼 되는거까지는 이해가 가는데
문제 중에 873이랑 874 질문 차이를 잘 모르겠어요 둘다 위로볼록 아래로 볼록 물어보는거같은데 873번은 볼록한 구간이 이미 정해진 상태고 874는 전체 실수여서 그런겅가요? 어디에서 차이를 보고 무슨 조건을 써서 풀어야할지 감이안잡혀요ㅠㅜㅡㅠ
제 능력이 안되서 말로 설명하기가 힘드네요
개념책을 같이 놓고 본인이 깊게 생각해보세요, 그리고 안된다면 다른분께 여쭤보세요
?? 그 두개 동치 아니었음? 헐
f'' > 0
아래로 볼록
f'' ≥ 0
모두 동치 아니에요
맨위 맨아래는 당연히 다르게 생겼으니까 다른데 아볼이랑은 각각 뭔차이죠?
찾아보니 직선도 볼록이라고 볼 수 있네요.. 아래 두개는 동치일거 같습니다
예를 들어, f(x)가 상수함수면 f''는 0이지만 볼록성을 묻기는 애매하죠
이런문제는 수능에는 안나올거 같아요 그냥 두개 동치라고 생각하셔도 될듯
아 뭔지 알겠어요 감삼다 ㅎㅇㅌ
저도 님 덕분에 좀 자세히 찾아보게 되었는데 볼록(convex)이 두종류가 있음
볼록 / 강한 볼록
여기서 직선은 볼록함수기는 하지만 강한 볼록은 아님. 마치 상수함수가 단조증가이지만 강한 증가함수는 아니듯이
그리고 수능에서 다루는 볼록성은 강볼록을 의미함. 따라서 상수함수 / 일차함수는 "수능 범위"에선 위로 볼록하지도, 아래로 볼록하지도 않음
영어로 된 용어들을 제가 한글로 바꾼거라 틀린 용어가 있을수도 있어요