(짧은 칼럼) 1/x을 적분하면 무조건 lnlxl+C라 할 수 없는 이유
게시글 주소: https://m.orbi.kr/00070920254
lnlx+3l의 부정적분도 비슷한 예시가 될 수 있겠습니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
공부 하는것도 기초적인 공부체력이 필요한데 난 이날부터 미친듯이 공부할거야 맘먹고...
-
25수능 생명과학1 해설영상 찍어봤는데 피드백ㄱㄴ? 6
과외생들 보라고 재미삼아 찍어봤는데 피드백은 커뮤가 제일 활발할 것 같아서 올려봐요...
-
국어끝나고 탈주하는 사람 봤는데 이해가 안되던데... 1년을 열심히 박고 그렇게...
-
↑18년 전 예시 국어 강사질 햇수로 10년 넘게 하면서 몇 가지 배운 게 있는데,...
-
탑애쉬 해야지 3
-
86명 점공에 82명이 1차합격 인증 1차합격이 108명인거 고려하면 76% 정도
-
수린수린아 1
시발 밤사이에 무슨 짓을 한거니....
-
수1 수2 마지막으로 공부한 지 각각 1년, 5년이 지나서 이걸 뉴런부터 들을지...
-
전라도에서 열심히 환자를 위해 인술을 펼치셨으면 하는 바램이 있음
-
애초에 공대생이나 의대생이 다른데에 신경을 많이 쓰면 졸업을 못한다고
-
1186381 오르비언성적표 도용해서 올리다가 쪽지보내니까 슬쩍 글삭닉변하고 전부...
-
점공 좀 해주세요 다같이 하면 상부상조잖아요
-
얘들아 2
자이스토리 기하책 22000인데 17100에 샀거덩 다음날 수2책 살ㄹㅕ고 같은곳...
-
25수능 보면서 고사장이 그리 시끄러울 수 있구나 첨 앎 1
24수능때는 국어 끝나고 세명 탈주 수학 끝나고 정적 영어 끝나고도 아무말도 없어서...
-
그럼내가 오전1시에잠들어서 오전3시에일어났다고? 수면이점점이상해진다
-
하
-
시립대 조기발표각임
-
소곱창먹고싶다 3
배고파 소곱창은 너무 비싸
-
타지에서 해서 6시에 출발해여 되눈데 클랏다 ㅋㅋㅋㅋ
-
가형임에도 만표가 154,153 ㄷㄷㄷ 1컷 81,79 통합수능이었으면 1컷 70밑에 나왔을지도
-
새벽피방후 1
새벽 헬스장 후 귀가 다들 잘자요
-
최저러라 표점 필요없음 사탐은 안정1 필요함 현역 시절 생윤 공부가 너무 힘들었음 정법 좋아함
-
제발요...
-
개심심해서 최수준 생2 현강들으러감
-
이러면 이제 나처럼 살엄청찌는거임 태양질량의0.66배까지늘어나고 핵융합이시작됨
-
미미미누 존나 자주볼수있음 실물 ㄹㅇ 잘생김
-
외계인피자 프레드피자 뉴욕어쩌고피자 스폰티니피자 더피자스탠드 기타등등피자 맨날 피자시켜먹어서 살이찜
-
24미적 공1선3 84점 백분위 97줬었음 나도 당연히 1등급이겠지 하며 있었는데...
-
걍 배달을 애용하긴 했음 어글리딜리셔스(미국 뉴올리언스식 양념치킨) 외계인피자...
-
카카오맵에 다 저장할게요
-
독서인강추천제발 1
현역때도 문학은 잘해서 항상 틀려도 1개 이하였는데 비문학이 너무 어려워요...
-
70키로 안 넘는 사람은 이 약 절대!! 먹으면안돼! ㅇㅈㄹ
-
24국어도 멘탈은 안나갔었는데 24미적은 시간 15분 남었는데...
-
어쩌자고 지금까지 안잔건데ㅔ
-
미래향(직원이랑친해질정도로자주감) 미스꼬레아 김치볶음밥(걍 주말마다감) 버거킹...
-
언매 하시던 분들 혹시 작수 화작만 풀어본 분들 계심? 15
시간 얼마나 걸리고 몇개 정도 틀리셨나요
-
10레벨이에요 1
레벨 높으면 좋은거죠?
-
배고프네 2
라면 끓일까
-
진짜 올해 수험장에 아는애들 너무많아서 답맞힌게 한임.. 우리 고사장에도 2명이나...
-
지하철에서 메가 가채점 입력했더니 의문사 백개 (ex. 듣기틀,매체틀,탐구1페이지,연산실수…)
-
너무 서러웠음 객관적인 난이도는 모르겟고 내가안한건맞는데 걍 내가 너무 ㅂㅅ처럼느껴졌은
-
호안정대 레츠고
-
걍 ㄹㅇ 이상하더라 내가 반년간 그렇게 노력했는데 이렇게 수능을 망쳤다고? 부모님이...
-
나를위한 불갈비스페셜을만들어줘
-
18수능 수능 끝날시점에 네이버 댓글 ㅈㄴ 봄 19수능 학교 등교후 학원...
-
굿나잇 13
잘자요
-
집에 주워먹을거없는데...
-
보통 어디 어디 넣었다고 지인한테 말하나요?
C1이랑 C2랑 안 같아도 되는 건가요??
네네 다를 수 있습니다.
한 함수 적분할 때 구간마다 적분상수가 다를수도 있는 거니까 그런 거조?
근데 개념이나 해설강의들보면 항상 ln절댓값+C1 하던데 오개념인가요?
"한 함수를 적분할 때 구간마다 적분상수가 다를 수도 있다"라고 생각하시면
좀 위험할 수 있습니다.
기본적으로 피적분 함수가 '연속'일 경우
적분이 된 함수는 자동적으로 미분가능하게 되어
적분 상수가 동일해집니다. (cf. 도함수 연속->원함수 미분 가능성 보장)
이 점을 염두해주시고
'피적분 함수의 정의역이 불연속으로 끊겨 있는 상태에서 (ex. 1/x)
적분할 때 구간에 따라 적분상수가 다를수도 있다.'
이렇게 생각하시는게 좋을 것 같습니다.
말씀해주신 개념/해설강의 같은 경우에는
앞뒤 맥락과 설명하는 상황을 추가적으로 파악해야하기에
확답을 완전하게 드리기는 어려울 것 같습니다.
현우진 선생님 킬링캠프 모의고사 28번에 나온 소재네요ㅎㅎ
저도 고려안하고 틀렸던…
아 그런가요? 킬링캠프에 이 소재가 이미 나왔는 줄은 몰랐네요ㅋㅋㅋ
이거 소재로 한 문제 사설에서 봤어요
그렇군요! 알려주셔서 감사합니다! ㅎㅎ
고등학교 수학에서 불연속함수 적분 안시키지 않나요??
가우스 함수같은 불연속함수 자체를 적분한다는 의미가 아니라,(당연히 고등학교 교육과정에서 불연속함수의 적분은 다루지 않습니다.) 연속함수를 적분할 때 정의역이 끊겨있어 구간별로 적분해야되는 상황(적분 상수가 달라질 수 있음)을 말씀드린 거에요!
예를 들어 점근선이 존재해서 한 지점을 기준으로 정의역이 끊겨있는 상황이라고 합시다. 다만, 그 지점을 제외하고 나머지 부분은 다 연속이고요(1/x의 경우 x=0을 경계로 정의역이 끊겨있음)
이 경우 함수의 구간을 나누어 적분하면(x>0,x<0) 구간별로 적분 상수가 달라질 수 있다라는 의미입니다!
아하! 친절한 설명 감사드립니당><
넵! ㅎㅎ