Challenge Problem 1
게시글 주소: https://m.orbi.kr/00071227814
먼가 적당한 난이도의 멋잇는 문제 떠오르는게 없어서 많이 어려운 문제라도 일단 들고 왓습니다. 이것도 아주 멋잇는 문제임미다
파티에서, 어떤 참가자들은 서로 친구다. 친구란 항상 상호 대칭적 관계이다. 어떤 두 명을 택해도 서로 친구인 참가자들의 모임을 '조직'이라 부르자. (단, 두 명 미만의 참가자로 이루어진 모임도 조직으로 간주한다.) 같은 조직에 속하는 참가자들의 수를 그 조직의 '크기'라 부르자.
이 파티에서 가장 큰 조직의 크기가 짝수라고 한다. 전체 참가자들을 두 개의 구역으로 나누어 배치하되, 한 구역의 가장 큰 조직의 크기가 다른 구역의 가장 큰 조직의 크기와 같도록 배치할 수 있음을 보여라.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
이거만 풀고 먹자 13
응
-
ㅇㅇ
-
내일 하겟습니다
-
아직 있으시나
-
ㅇㅂㄱ 4
-
타 커뮤에서 맨날 댓글로 키배 뜨던 놈 있는데 차단하니까 맘이 편함 뭐 알지도...
-
지 쓰레기통 못 찾겠다고 쓰레기 좀 대신 버려달라고 하더라...
-
잘햇다 응
-
김승리 tim 2
이거 작년에 한 거 보니까 기출 타이머 맞춰놓고 시간 안에 풀게 하던거던데 교재...
-
부모님이 보험 빵빵하게 넣어준 건 알고 있었는데 격리입원 100만원 독감진단비...
-
프사 변경했어요 3
회귀?함
-
질문받습니다 5
요즘 너무 행복함 티원 원딜명가 스매쉬 발굴에 담원의 재등장까지 이거지이거지
-
으응 하루에16시간씩 하면 고려대경영가능?
-
자허블에 더 부을거에요 밸런스 맞추기
-
ㅇㅇ
-
지1도 마찬가지임?
-
존나 느좋
-
물화생지1보단 일단 재밌음
-
이 무슨 역설
-
롤하고 잘까요 15
그냥 잘까요
-
아 pi/3 0
pi/6인줄 알고 풀다가 왠지 이상하더라..
-
아주대vs인하대 5
투표좀 부탁드려요!
-
얼굴로 기만은 하지 말자 상처된다 하나하나가
-
크리스피 크림에서 오리지널 글레이즈드(1개) 먹음
-
계좌에 돈 존나 줄줄 빠졌는데 곧 설날이라 다행이다 2
술 때문에 06 지갑 지금 존나 탈탈 털림
-
와꾸 빻아도 나대지만 않으면 중간은 간다….
-
수1, 수2 만족중인데 확통도 좋나여??
-
MS "중국, AI 허위조작정보로 한국·미국·인도 선거 방해할 것"(종합) 1
"한국서 日오염수 게시물로 분열 조장…당시 이재명 언행 증폭시켜" "북한, 韓美와...
-
생윤 먼저 해야하나…? 조언좀요 노베임
-
그건 바로 둘 다 품사가 동사라는 거임
-
오르비/사건사고 1
https://namu.wiki/w/%EC%98%A4%EB%A5%B4%EB%B9%84...
-
교재는 좋은 게 맞는 듯. 근데 번장가면 4만원에 팔리던대 강의도 없는 교재가...
-
벌써 2025년이거든
-
궁금해요
-
현역24수능 언미영물1지2 88 95 2 83 92 반수25수능 언미영물1지2 92...
-
수특 국어 표지 실물 21
귀여움 ㅅㅌㅊ 수특 독서 수특 언매 수특 국어 수능특강
-
왜 밑에 다 깔려있던건데 아 ㅋㅋ
-
걍 강민철이나 듣지;;
-
생명과학1 1
올해 사탐런이 작년보다 더 심해질거 같은데 생명과학은 타격이 얼마나 클지 예상이...
-
같은 시간, 같은 기자가 쓴 기사를 홈페이지 검사? 내용을 바꿔서 틱톡에 올렸는데 신고해도되나요??
-
피코 사건 터진 게 작년 5월이란 게 믿기지가 않는다 1
https://gall.dcinside.com/mgallery/board/view/?...
-
시대에서 직접 얻을 방법이 딱히 없는데 미개봉 상품같은거 수1,2,미적...
-
전화받아라 3
아 진짜 ㅋㅋ
-
의대 지원할 수 있음? 예전에는 확통 든 애들도 잘랐던거같은데 요즘은 이과애들 선택과목 정배가 뭐임
-
1. 오르비 활동을 늘린다. 댓글은 5덕 주는 것 같고, 뭐 10덕도 가끔...
-
시대재종 9
국어 94(2) 수학 96 (2) 영어 3등급 정법 99(1) 사문 100(1)...
-
? 0
애들 따라잡으려 햇더니.내가 더 빨리 왓네
ㅇ얼마정도어려워요? 정말멋있는문제보다 더?
넵..
가장 큰 그룹 반반 나눴을때 반보다 더 큰 그룹이 있다면 그 크기만큼으로 분할
없으면 이대로 종료
아 새로분할했을때 더 커질수가 있네 단순한 문제가 아니군......
고능아 총집합이네
서로 친구…?
가정부터가 틀렸네
12명이면 6명 6명
11명이면 4명 4명 3명
10명이면 4명 4명 2명
9명이면 4명 4명 1명
이런식으로 모든 경우에서 분할될 수 있다는걸 보여주는 문제인건가…?
사람들을 점으로 보고, 친구관계를 선으로 잇는다 했을 때.
어떤 점들만 쏙 빼서 얘네 사이에 선들만 봤을 때, 전부 다 선이 잇으면 그게 조직.
이런식으로 형성되는 가장 큰 (점이 많은) 조직의 점 개수가 짝수인게 조건.
점 전체를 두 그룹으로 나눠서, 두 그룹에서 가장 큰 조직의 점 수가 항상 같게 분할할 수 잇음을 (점 개수와, 선 배치에 상관 없이.) 보이는게 문제임뇨.
음…음…음…
머리 아프네
조직들을 어떻게 어떻게 잘쪼개면
예쁜그림이 나올거같은데
으… 탈주해도 되나…?
이거는 제가 올린 다른 문제들에 비해서도 꽤 압도적으로 어려운 문제임미다
진짜감도안오네 짝수라는걸 어떤 의미로 받아들여야할지부터모르겟음
이건 진짜 많이 어렵긴해요 ㅋㅋ