미적 질문 (간단하게 정리했음)
게시글 주소: https://m.orbi.kr/00071251089
g(x)가 아무런 조건도 없는 상황인데
2x+npi 꼴이라 할 수 있나요?
g(0) = npi 가 아닌 상황이면
꼭 g'(0) =2 일 필요는 없는 거 아닌가요??
미적 너무 오랜만이라 헷갈리네요 ㅠㅠ
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
시원하게 한번 ㅇㅈ하자
-
단 1개만 골라라 하면 뭐 고름?
-
교양을쌓아보자
-
인기 외모 말고 오로지 강의로만
-
도망가야겠다
-
나랑 세살밖에 차이 안나네
-
당분간 쉬어야지
-
점프 10
하는 사람 많음?
-
우리 부모님은 수지 부모님이 아니라서 괜찮음
-
샤브샤브 8
두가자
-
원래 이거였는데 이걸로 바뀜 추측하건대 KISSCHEMA 2016-2020 기출 저...
-
시립대에서 씨파따기vs반수해서 연고대가기 25수능은 14211이라 수학만 올려서...
-
전자공학과 가는데 노트북 뭐 사야할까요? 추천 좀 해주세요
-
치즈돈가스 떡볶이 라면은 절대 못끊겟음...
-
자해<- 이거 왜함 11
한다고 기분 안풀림. 몸에 상처와 흉만 남아서 보기 안좋음. 그리고 우리나라는...
-
흐으음
-
일단 의대의 경우 화1, 생1 추천 의대가 이제 생물1과 생물2 일부를 ㅈㄴ...
-
친구 자나보네 2
새벽 4시 반에 밖에서 스토리 올럇었노 ㅅㅂㅋㅋㅋㅋ 당연히 한 12시쯤에 올린 줄...
-
모니터 살려고 하는데 자금은 30~40까지 가능함 모니터 잘 아는 사람 있으면 추천좀해주고 가요~
-
공존 가능한거임?
-
법학전문대학원
-
골라봐요
-
만약 최초합 된 학교로 에타 가입했는데 추합되서 딴 학교로 옮기거나 할거면 걍...
-
안녕하세요, 연고대 3회합격자 연상논술입니다. 저소득층(기초생활수급자,...
-
그래도 ㅇ,ㄹ단 시발점부터 들어야지 수액 맞고 일어나니까 살만하ㄴㅔ
-
신공학관 완성되면 ㄹㅇ 건물 내부는 고대 문과캠보다 웅장한것 같음
-
여러분들이 아마 살번서 한 번쯤은 코드(Chord)에 대해 들어보셨을 겁니다....
-
?
-
덕코주실분 1
간사합니다
-
안녕하세요, 연고대 3회합격자 연상논술입니다. 자기소개 시작하겠습니다. - 강사...
-
솔직히 다른애들은 모르겠는데 얘는 컴퓨터 엎고 나가도 인정함
-
도표 문제의 난이도가 과탐 문제에 어느정도 수준인가요? 어느정도인지 사람들 글로만...
-
해설지 보면 정작 내가 제대로하고있는게맞는지. . . 의문이 들고 안보면 시간이...
-
처음 해보려는데 pt 몇회쯤 받아야함
-
본인도 컴퓨터학과가 다소 공대 아웃풋에서 밀린다고 생각했었던 사람이었음 그것도...
-
생활패턴 정상화하자..
-
그럼 0.5cm 내리겠네요. 걱정 노노~
-
여르비분들 질문 11
선물로 보내주려고 고른건데 디자인 어떤가여?
-
ㄹㅇ 재능충인가 1
맵만 외우면 ㄹㅇ 괜찮을지도
-
[고려대학교 25학번 합격] 합격자를 위한 고려대 25 단톡방을 소개합니다. 0
고려대 25학번 합격자를 위한 고려대 클루x노크 오픈채팅방을 소개합니다. 24학번...
-
어쩌자는거야
-
그래프풀이로는gx가연속이라는걸보장할수없습니다즉식풀이를하여야하는데이때근의송식을사용합니다...
-
현역이고 이번에 수능 언매미적생지로 2(89) 1(97) 3 3(81) 4(75)...
-
2030년?
-
치대 선배님 공보의 근무하는데 가본 적 있는데 진짜 인생이 그렇게 편해보일 수가 없었음
-
군의도 웃긴게 4
성적 최우수자만 선별해서 위탁교육시키고 전문의 보드 따게하는거 현실은 의무복무 후 개원 오^^
-
학부가 중요한가요 로스쿨이 중요한가요??
-
둘중 ㅇㄷ감? 0
ㅈㄱㄴ + A는 SKY, B는 중경외시
사실 저도 그 생각햇는데
머지 싶음 지금
오...과외 준비하시는건가요?
양변 미분해보세요
아닌가
맞내요 이거
g'(0)=0이면 g(x)가 왜 상수인지 알려주실수잇으신가요
g'(0)=0인데
그 외에는 미분계수가 0이 아니라면요??
아 헷갈리네..
충분조건이지 필요조건은 아닌거같은데,,,
아니네 맞네,,,씹
아니네 아닌데
원본 문제 보여주실 수 있나요?
오른쪽항이 0부터 2X까지라 N파이인거 아닌가요'
g(0)이 N파이가 아니면 g(x)-g(0)=2x라고 해도 좌변 우변이 같다는 보장이 없어요
사인제곱을 0부터 2X까지 적분한거랑 0.5파이부터 2X까지 적분한게 다르자나요
g가 1차함수라는 보장이 없어서
시작점이 달라도 얼마든지 적분 결과는 같게 만들 수 있긴 해요
위끝 아래끝 기준으로 좌변은 미지수, 우변은 상수가 나오게 두면 g가 2x+C 꼴로 나와야 함이 보이고, 우변의 한쪽 끝이 0으로 고정이니까 좌변도 f의 절편이 경계여야 함 즉 +n*pi
인 것 같네요
오류 맞는 것 같네요
함수 h(x)=1/2(x-sinx*cosx)에 대해 h'(x)=sin^2(x)니까
h(g(x))-h(g(0)) = h(2x)-h(0)이 성립하고, 이때 h(x)는 일대일대응이니 역함수가 존재해서 임의의 g(0)에 대해 g(x)=h-1(h(2x)+h(g(0)))과 같이 g(x)를 정의할 수 있어요
물론 g(0)=npi가 아니면 g'(0)=0이고요
사진은 g(0)=pi/2인 케이스에서 g(x)의 그래프에요
생각해보니 원본 문제에서는 g'(x)가 나타나는데, 이런 식으로 정의되면 특정 점에서 약간 x^1/3 그래프랑 비슷한 형식으로 미분계수가 발산하는 문제가 있긴 하네요
그렇다고 미분가능이라 명시된 건 아니라서, 여러모로 애매하긴 해요
검토가 안된 문제같네여...
선생님 답변 정말 감사합니다 ㅠㅠ
뭔가 이상한건 느꼈는데
현우진 쌤 교재라서 해설이 무조건 맞을 줄 알았네요
감사합니다!
잘 읽었습니다.
의문이 드는 것은
제가 애초에 질문한 이유가 g(0)=0이 아닐 경우에도 성립하는지 궁금해서 였는데,
선생님의 증명에서는
f(g(x))=0 이면 f(2x)=0 인것을 이용하셨네요.
물론 맞는 말이긴 하지만,
g’(x)=0이어도 f(2x)=0이 됩니다.
그렇다면 f(g(x))=0과 f(2x)=0은 필요충분조건이 될 수 없지 않나요?
g'(x)f(g(x))=2f(2x)이므로, f(g(x))=0이면 f(2x)=0이지만, f(2x)=0이면, f(g(x))=0일 수도 있고, g'(x)=0일 수도 있기에, 필자는 f(g(x))=0의 해와 f(2x)=0의 해가 일치한다는 걸 증명함. f(g(x))=0→f(2x)=0과 f(2x)=0→f(g(x))=0을 각각 증명해 f(g(x))=0⇔f(2x)=0을 도출한 게 아니라, f(g(x))=0→f(2x)=0와 추가적인 증명을 이용해 f(g(x))=0의 해와 f(2x)=0의 해를 구했고, 두 해가 일치했기에 f(g(x))=0⇔f(2x)=0이 도출된 거임