수학에서 실전개념이라는게 뭐라고 생각함?
게시글 주소: https://m.orbi.kr/00071329880
답지풀이말고 천재적인 풀이같은거 있잔아
굳이 n축같은 교육과정 외 스킬 안 가져오고도 그래프로 푼다거나...그런거
실전개념? 뭐라그럴까 이런걸
예를들어서 저 밑에 문제 조건을 보고 y=sin(k/6)선대칭이구나 바로 알아내는...그런거
이런거는 어디서 배우는거임? 이런게 재능차이인가 기출 풀어도 저런 능력은 안키워질 것 같음
저런 직관은 어떻게 키우는걸까
저런거에 집착 안하고 정석풀이 위주로 공부하는 편이었는데 3등급 벽이 안뚫려서 고민이 많아짐
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
그림이나 그려드릴게요
-
시름말고
-
작수 영어 4등급인데 션티 커리 타는 중입니다. 매주 독재에서 워드마스터 하이퍼...
-
?
-
과연 제가 일찍 잘 수 있을까요?
-
ㅅㅂ 2
게이는 나가라 왜케 드럽지 ㅋㅋㅋㅋㅋ
-
그나저나 머리카락 그리기가 헬임 킹받으시겠다
-
질문받음
-
[국어] 2024 화암구곡 34번문항 4번 선지에서 겸양이 답의 근거가 아닌 이유 25
짧은 글입니다. ‘야인 생애‘는 겸양어입니다. 겸양어이므로 겸양의 태도를...
-
[칼럼] 2차원 돌림힘을 정석과 기하로 풀어보자(2편) 0
생각보다 더 할게 없어서 금방 2편을 적게 됐네요. 이번 2편에서는 2차원 돌림힘을...
-
3모 수악 7
120분컷 내버리겟음
-
집중이 안돼...
-
진짜... 하면 최저학력 개박살날 것 같은데 당장 내년 시행이 걍 말도 안됨...
-
강대에서 재수하고 시대에서 컨설팅이랑 의대면접수업 받았는데 2
강대랑 시대 둘다 실적 기록되나요
-
난 왼손잡인데 4
글씨만 오른손으로 씀
-
충남약 점공상황(최초합컷) 알려주시면 감사하겠습니다.. 충남대 약대 정시
-
그림그려보게 4
이미지추천좀
-
혹시 저번주 김성호 시대 대치 테스트지 미작이링 정규반 딥지랑 있으싱분 ㅜ...
-
화1 과외구합니다ㅠㅠ 12
우리 과목 정상운영합니다ㅠㅠ
-
외 안 뜨는지 6
이해가 안 되..
-
배불 4
우설 좋아하는 사람
-
이가 시리네 2
나도 이제 늙었나보오..
-
다음 주에 할 것인가
-
나중에 화나면 12
덕코로 레어다사고 싹다 경매 시킬거임
-
명동 고고
-
막 몇십~몇백의 가치가 있는지 모르겠음 그냥 소주 업소용 궤짝 여러 개 집에...
-
당연하듯이 푼 방식이 사실 그 n축으로 불리는 거였는데 이게 정석풀이가 아니면 대체...
-
공통 김현우 드랍하고 인강으로 김범준 허들링 듣는 거 어떰?
-
아직 난 연대생인것이야......
-
추븝다..
-
DK - HLE 3세트 이전까지 브라움은 6전 전승이었다 (안딜 2승, 베릴 2승,...
-
캬캬
-
안 먹으면 180에 80 미들급 유저가 때리러감
-
사고싶은걸 사면 남들도 사고싶어서 뺏기더라
-
작년엔 안이랬는데 친척들 다 정치얘기하시노
-
복권 당첨확률 10배 이벤트 하고 싶다
-
3덮 7
언제쯤부터 신청할수잇어요? 신청하면 현장으로가서 응시하고오는건가요?
-
노래 off→ 92 +-4 노래 on→ 100 (78min) ※평소 풀던 거랑...
-
이거 성적표 낼 때 문서확인번호만 보이면 12월 6일에 학교에서 받은 성적표로 내도 되는 거죠
-
맞팔 ㄱㄱ 4
-
난 재능인거같음 중학생보다 그림을 못그리니..
-
그림 ㅇㅈ 6
고딩 때 공부하기 싫으면 그림 그림
-
다들 원하는 바를 이루시길 바랍니다
-
내가 그린 여캐 4
-
드자가!!!!
-
모든 메타 내가 돌리는 중임
한 문제 한 문제를 소중히 여겨야댐
찌찌뽕
근데 문제 하나 무작정 처다본다고 그런게 떠오르지는 않음 나는....
이제 저 문제에서 선대칭 아이디어를 알앗으니 비슷한 조건이 나왓을 때 이 문제를 공상하듯이 풀 수 잇으면 정말 빠르게 실력상승이 가능함미다
저건 실전개념보단 짬바임
저런거 기출 풀다보면 보입니다
단 재능 있는 사람은 개념만 해도 보여요
재능 없으면 기출 5회독은 해야 그제서야 보이고요
그냥 4점짜리 벅벅 회독 돌리면 감이 오는걸까용...? 어떤 생각을 해야하는건지 궁금해용... 수분감 이런거 들어봤는데 걍 현우짐풀이 외우기 느낌이라 손절햇어요
다른 사람의 풀이에는 사고과정이 안 들어있어요. 물론 해설지가 아니라 강의같은 경우에는 그 사고과정을 어느정도 설명해주지만, 그럼에도 본인 스스로 어떻게 사고해서 이 문제가 풀린건지 정리할 필요가 있습니다.
문제를 열심히 시도를 해보고 해설을 봐야하는 이유도 이때문입니다. 그냥 보면 사고과정을 파악하기가 쉽지 않거든요. 어느정도 부딪혀보고 해설을 보면 여기서 왜 그 생각을 햇어야 햇는지를 파악하기가 수월해지죠. (또 왜 내가 못 풀엇는지 등등..)
강사가 가르칠 법한, 혹은 널리 퍼져 있는 실전개념과 공식들을 우선 숙지하고 있어야 함. n제나 기출을 풀 때 우선은 푸는 것 자체에 집중하되, 그 풀이가 덜 다듬어져 있다면 혼자서 끙끙대보는 거임. 여기서 적용 가능한 개념이나 공식이 없을까? 필요하다면 해설지나 강사의 풀이과정을 참고해서라도 이런 풀이를 많이 접해야 함. 이런 식으로 문제를 충분히(충분히의 기준은 사람의 재능에 따라 갈림) 접하다 보면 새로운 문제를 볼 때 기시감이나, 말로 표현 못할 직감이 들 때가 있음. 이 직감은 문제를 많이 풀수록 더 자주, 더 뚜렷하게 나타남. 이게 쌓이고 쌓여서 풀이도 다듬어지고, 빨라지는 거
+번외로, 위의 문제는 선대칭을 꺼낼 필요 없이 그냥 y=sinx와 y=sin(kπ/6)의 교점의 개수로 생각해도 무방함. 어차피 교점의 위치를 알 필요 없이 개수만 구해도 된다면, 구간에 관계없이 sinx=sin(kπ/6)일 때 교점이 생기므로 굳이 그래프를 희한하게 안 그려도 됨. 당연히 이런 아이디어도 다양한 문제를 많이, 아주 많이 풀다 보면 자연스레 떠오름