[칼럼] 속도 변화량과 운동량 보존(물1)
게시글 주소: https://m.orbi.kr/00071372679
**감상 전 좋아요와 팔로우는 작성자에게 큰 힘이 됩니다!!
안녕하세요!! 오늘은 수학의 "거리곱"과 같이 계산을 조금(?) 줄여줄 수 있는 풀이법 하나를 들고왔습니다.
알고 계시는 분이 적지는 않을 것이라고 생각되는 주제이지만, 긴 칼럼은 아니니 즐겁게 읽어주시면 감사하겠습니다!
우리가 흔히 "운동량 보존" 하면 떠오르는 식이 하나 있습니다.
바로 이 친구죠 (v는 충돌 후 속도, v'은 충돌 전 속도입니다!)
우리는 위의 식을
와 같이 변형하고, 이를 운동량 보존 법칙이라 부릅니다.
(원래 p앞에 델타가 들어가야하는데 수식 입력기에서 안들어가네요.. 양해 부탁드립니다)
.
.
.
근데, 밑의 식의 vA-vA' 이 친구... 어딘가 낯이 익습니다.
충돌 후 속도에서 충돌 전 속도를 뺍니다.
사건 후 속도에서 사건 전 속도를 뺍니다.
맞습니다. 바로 속도 변화량입니다.
그래서, 우리는 운동량 보존 법칙을 다음과 같은 공식으로 변형하여 쓸 수 있습니다.
사실 이론은 여기서 끝입니다. (가만 보면 별거 없긴 합니다.)
사실 이 식의 진가는 문제를 푸는 데에서 나옵니다. 문제를 보실까요?
첫번째 문제입니다. 231116입니다.
초기 B의 속도는 8m/s인 것, 3초 이후 A와 B의 속도는 모두 5m/s 인 것이 자명하니
만약 운동량 보존식을 세우게 된다면, 식은 다음과 같을 것입니다.
이번 칼럼에서는 이 식 대신에, 속도 변화량을 이용한 운동량 보존식을 한 번 써봅시다.
이렇게 충돌 or 분리 상황이 단순한 문항에서는 사실 위를 쓰나 아래를 쓰나 큰 상관이 없습니다.
일단 한 문제 더 보실까요. 230613입니다.
정석적인 풀이는 다음과 같습니다.
속도 변화량으로 푼다면 다음과 같습니다.
표를 읽는 법을 말씀드리자면, 물체 또는 계의 전후 속도를 적어두고, 선 밑에 속도 변화량을 적습니다.
속도 변화량 밑에는 운동량이 보존 되도록 하는 물체 또는 계의 질량비 혹은 실제 질량값을 적어주시면 됩니다.
(이 질량비는 속도 변화량 비율의 역수가 되겠죠!)
여기까지 보면 밑이 조금 더 눈에 가시적으로 들어오는 정도? 될 것 같습니다. (나만 그런가)
마지막은 210917인데요, 이 방안을 극한으로 쓰면 어디까지 쓸 수 있는 지를 보여드리고자 합니다.
이번에는 속도 변화량으로만 풀어보도록 하겠습니다.
일단 모든 시점에서 A ,B, 우주인의 운동량의 합은 보존됩니다.
우주인, A, B가 함께 운동하던 시점에서 3개가 모두 분리 되는 시점까지의 변화를 파악해봅시다.
이 두 시점 사이 A, B의 속도 변화량은 v라 한다면, 식을 다음과 같이 적을 수 있습니다.
자연스래 A와 B의 속도 변화량 v는 2/3v0 가 되고, 분리 직후 A의 속도는 5/3v0이 됩니다.
이번에는 우주인, A, B가 함께 운동하던 시점에서 A만 떨어져 나오는 시점까지 분석해보겠습니다.
함께 운동하는 B와 우주인을 질량이 3m인 계로 취급하고 이 계의 속도 변화량을 v라 하겠습니다.
그럼 식은 다음과 같습니다.
따라서 v는 -2/9v0가 되고, 답은 4번이 됩니다.
이걸 직접 운동량 보존 법칙 만으로 풀어보신다면 이 풀이가 계산을 얼마나 줄였는지 체감하실 수 있을 것이라 생각됩니다.
.
.
.
.
아무래도 마지막 문제와 같은 복잡한 상황이 요새는 잘 등장하지 않기 때문에 이 풀이를 그닥 중요하지 않다고 생각하실 수도 있을 것 같습니다.
하지만 아까 제가 말씀드렸듯이, 저는 개인적으로 이 풀이를 "거리곱"과 비슷하다고 생각합니다.
한 마디로 말하자면, "없어도 상관없으나 있으면 도움은 되는 정도?"
굳이 식 여러 줄 달고 다니지 않고, 두번째 문제에서 보여드린 표 풀이처럼 훨씬 가시적으로 질량비를 구할 수 있기 때문이죠. 그래도, 익혀두어서 나쁠 것은 없으니 한 번 정도는 익혀보시는 것을 추천하기는 합니다. (이 정도면 해주자)
이 풀이는 두번째 문항처럼 질량비를 구하는 데 쓰실 수도 있고, 세번째 문항처럼 속도 변화량을 구하는 데 쓰실 수도 있습니다. 보통 질량비를 구하게 된다면 속도 변화량의 비가 주어져있는 상태일 것이고, 속도 변화량을 구하게 된다면 질량비와 남은 하나의 물체 또는 계의 속도 변화량이 주어져 있을 것입니다.
.
.
.
.
아무쪼록 긴 칼럼 읽어주셔서 감사드리고, 지적할 부분이 있으시거나 궁금한 점이 있으시다면 댓글 달아주시면 감사하겠습니다! 지금까지 lshdmw이었습니다!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
좋아요 0 답글 달기 신고
-
대중적으로 가장 유명한 퍼즐 중 하나인 루빅스 큐브는 꽤 복잡한 퍼즐이다. 면의...
-
레어 사세요 6
다양한 고양이레어 다양한 국기레어 다양한 서브컬쳐레어 다양한 사치품레어들이 있어요
-
찍기특강 좀 치는데
-
헐
-
ㅂㅂ 6
사요나라
-
나도 몰라 ㄷㄷ....
-
먼가 재미있는 메타가 도는 거 같은데…!!
-
ㅈㄴ까먹어버리네 안까먹는법없나
-
공개저격 한번 갈길게요 15
아까부터 밥 드신다던 한 분 계신데 지금 한 3시간 째 안 먹고 계시는 것 같은데...
-
라인업 빡시네;;
-
풀어본사람있음? 뭔가 아무도 안풀어봤을거같아서 물어볼수가없네
-
선착3명 4000덕
-
슬슬 밥을 먹어볼까 13
난 준비됐어
-
반수하시는 분들 보통 1학기부터 공부 시작하나요? 저는 1학기에는 학교 다니면서...
-
집오니까 갑자기 먹다남긴 새우전이 그립네,,
-
천성 이과가 말아주는 생윤 손풀이 주의) 틀린 문제가 다수 있을 수 있음
-
지듣노 7
-
진짜 모름
-
김동욱 1
자러갈게요...
-
글 ㅈㄴ 맘에 안 든다수2 다시는 안 써..
-
내숯블치킨언제와 2
닭을잡고있나바
-
해보고 싶은거 13
부계 만들어서 셀프 저격 셀프 반박 셀프 사과 해보고 싶네 부계 만든단 뜻이...
-
뭘써볼까요 추천좀
-
선착순 9
축하합니다 당신은 천만덕입니다
-
졸업하면 어디로 빠지나요? 그리고 생명공 괜찮은 학교 어디어디 있나요?
-
07 예비고3이고 1등급 턱걸이로 74분 풀고 국어(화작)86점 맞았는데 앞으로...
-
호감작이 될까요
-
나 유동하고싶은대
-
https://youtu.be/-So5uwZHT6s?si=wa_7N_mfItL1zHF...
-
탈릅 안해야지
-
굳이왜하는거지? ... 질문하는사람도 이해안되는데 그거받아주고 관리하는것도...
-
배고프다.. 4
밖이었으면 뭐 하나 사먹었을 듯 밤에 금식당하니 살이 빠질 수 밖에
-
계속 올르비만함?
-
저기서 빵디만 흔들어도 살 ㅈㄴ 빠질듯 ㅇㅇ
-
캐스팅 4번 당하면 뭔지 암? ㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ 25
캐스터네츠 푸푸하하ㅏㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ 진짜 개 현웃 터졋네...
-
잠 1
님들도 자셈 굿잠
-
의미없는 대소비교 시키는 문제들 특히 마지막 두문제는 순수하게 노가다로 시간을 끌기...
-
쿨쿨
-
수2 3
그지같다
-
왜 아무도 안해요
-
설날 수금 기념
-
개인 사정으로 인하여 본래 5일전쯤엔 작성되어야 했을 글을 이제서야 올리네요 어쨌든...
-
내일은 최소 4시간 공부해야지
-
너무 쉬웠나..
-
4시간동안 똥 7번쌋노
-
그게 내 요지야 물타기가 아니라요
-
메타 돌리기용 ㅇㅈ 23
-
얘는 저격 안해줌?