[자작문제 해설] 수1 삼각함수 문항
게시글 주소: https://m.orbi.kr/00071486499
아까 올린 이 문제에 대한 해설입니다.
1번 풀이는 조금 많이 발상적인 면이 강하고, 2번 풀이가 약간 정석적인 루트라고 볼 수 있을 것 같습니다.
관건은 sin값이 같다는 조건을 어떻게 해석하느냐 였는데, 아마 해당 조건의 해석 방향이 수1보단 중등 기하적인 성격이 강해 낯설어하셨던 것 같습니다.
다음에도 재미난 문제로 찾아뵙겠습니다!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
수학이 왤케 어렵지
-
수험생 입장에서 직접 푼거라 어느정도 자기편향성이 작용하겠지만 개인적으론 적절한...
-
더블업해야지 0
낄낄
-
이강인 선발
-
중앙대 학벌 8
대기업 들어갈 때 마이너스 있는 학벌일까요?? 학점 괜찮다는 가정하에
-
자라. 4
넵
-
뭐요
-
너무 어렵잖아
-
탱제이스 너무 사기다 10
진짜 개사기같음
-
님들 수학 11
딴거보다 특히 어려운 분야 잇으신가요
-
4살때 나온 작품이..
-
은테 장점 0
옯창인 척 코스프레 가능함
-
광고내용이 너무 킹받음 지가 60키론데 너무 빠져서 병원까지갓다 그러니까 많이...
-
돌고래랑 고래 5
돌고래가 더 쎈거 아닌가요고래는 그냥 고랜데돌고래는 돌도 잇잖아요
-
댓글 달면 질문해드려요 49
-
아 원딜 1
아;
-
어제 한군데 다녀왔고 오늘 한군데 또 가야함 그리고 나중에 한두군데 더 가야함
-
얼마나 커요
-
내용을 입력하세요.
-
하아..
-
더 모다겟는데..
-
26수능 27수능 응시할거면 군대 미루는 게 낫겠죠? 고민되네요 ㅜㅜ
-
멀티 장인 1
듀랭+오르비
-
나의 본처가 되도록
-
오르비 꿀팁 4
뭔가 재미난데 곧 지워질 글 같으면 댓글을 달고 진짜 지워졌을 때 사물함을 통해 들어가보세요
-
부탁드립니다 3
.
-
운세 재미있네 1
시간뚝딱 포스텔러 ㄱㄱ 무료운세 신기한거많아요
-
그래도 안지영이면 극복가능.
-
ㅂㅂ 4
내일은 동대가 했음 좋겠네요 이젠~그랫으면 좋겠네~
-
이런국가를왜좋아하는거지 가까이서보지않기에좋아하는건가
-
열반님 -> 다람쥐님 -> 나머지
-
근데 킬뎃만 보면 18
난 괜찮게 한 거 같아 역시 나야
-
근데 그래프가 편하긴한듯 그래프가 좀더 직관적임
-
수1수2도 있었네요 왜 이제 알았지
-
생각해보니까 0
할아버지랑 아버지 큰아버지 사촌형들 그리고 친형이랑 나는 같은 Y염색체를 가지고 있네 신기
-
예비 한바퀴 돌아도 추합안될 번호대지만 궁금해요 한교 한문 성대 성균
-
다 먼가 매칭이 되네 ㅋㅋ
-
님도 빨리 내 닉 알아내라.다람쥐님 닉 ㄹㅇ 그 다람쥐가 지엇을만한 닉이네
-
푸앙대 전과 0
문과에서 문과로 전과하려고 해도 전과하려는 과 전공기초 들어놔야 하나요?? 그리고...
-
가끔 여자랑 연락할 때 힘들다고 하는 남자들이 있는데 4
여자랑 연락이 잘 안되는 건 니가 연락에 능숙허지 않아서가 아니라 여자가 너랑...
-
수정된 마지막 문단 제시문 일부
-
요네 1
ㄱ ㅡ다 음은 야스오
-
하
-
지역차별 1
안생길수가 있나 이거 어떠한 지역을 차별하는게 아니라 그냥 차별된 지역인듯 ㄹㅇ
-
흐흐흐흐 2
-
진짜 이 캐릭터 띄우고 비대면 과외해주나
와 딱봐도 어려워서 버렸는데
버리길잘했네
ㅠㅠㅠㅠㅠ 당신만을 기다렸는데 ㅠㅠㅠㅠㅠㅠ
"문제가 평가원스럽지 않았다"라고 생각합니다
1번처럼 끼워 맞추려다 말았는데 맞는 풀이였네요 ㄷㄷ
공부 그거 얼마나 쉬었다고 벌써 원을 다 까먹었는지..
1번 루트로 가실 생각을 하셨다니... 대단하십니다 ㅎㅎ 사실 1번 상황을 보고 거기에 맞춰 문제를 제작하였습니다
제가 도형에 약해서 일부러 보조선의 모든 경우를 다 생각해 보고 들어가기 때문에 그랬던 것 같네요
이게 진짜 좋은, 중요한 자세인 것 같습니다
물론 틀려 가면서 데이터베이스에 누적되는 거라 ㅋㅋㅋ 올수 14번도 설맞이에서 당해 본 발상이 아니었더라면 높이를 구할 수 없지 않았을까 싶긴 합니다
한 번 당한 문제를 다음엔 안 당하는게 공부의 핵심이라고 생각해요
친구한테도 이 문제 줫는데 풀때까지 안 잔다는데 괜찮겟죠?
ㅋㅋㅋㅋㅋㅋㅋㅋㅋ 풀어내실겁니다 아마...!
왼쪽 삼각형 볼 생각은 하지도 못했네요.. 덕코 감사합니다 ?
ㅎㅎ :)
EP길이랑 각 DEP가 45도임을 바로 구하는 방법도 있네요..!
Sin값 같다는 조건에서 매개하는 각 이미지로 각 DEA=PEF=x, DEP=•이라 할 수 있고, 원주각의 성질로 각 DAP=DEP, 각의 이등분선이니 각 DAP=PAE=•, 이때 각 A가 직각이니 2•=90° <=> 각 DEP=45°, 삼각형DEP는 직각이등변 삼각형이 되네요!
맞습니다! 해당 방법으로 해설에서 EP의 길이를 구한 것이나, 과정이 자명하여 굳이 따로 서술하진 않았습니다 ㅎㅎ.(페르마 아님) 결국 외접원의 반지름을 구하기 위해선, EP의 길이와 각ECP의 sin값을 알아야 sin 법칙을 사용할 수 있고, 문제에서 주어진 sin 값이 같다는 조건은 각ECP의 sin값을 알아내기 위해 사용되었습니다.
"Sin값 같다는 조건에서 매개하는 각 이미지로 각 DEA=PEF=x, DEP=•"
이 부분에 관하여 약간 첨언하자면,
ㅋㅋㅋㅋㅋ 저 부분을 고민을 했었던 것도 사실입니다....
다만 해설을 저렇게 작성하지 않은 이유가.. sin값이 같다고 했을 때 저 두 각이 a와 ㅠ-a 관계인지 같은 각인지 명확하게 보일 수 없어서 였습니다.
조건을 cos값으로 줬다면 논리적 비약 없이 해당 결론이 바로 나올 수 있지만... 그러지 말라는 문제의 의도 정도로 봐주시면 감사하겠습니다!
좋은 문제 공유해주셔서 감사합니다 :)