미적분 자작문제
게시글 주소: https://m.orbi.kr/0008204438
갑자기 또 발상이 떠올라서 만들었네요. 마지막에 적분을 하는 발상은 문과가 할 수 없는 부분이지만 나머지 부분은 문과 분들도 하실 수 있으니 많은 지적 부탁드려요..
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
언확쌍윤이고요 백분위로 현재 메가 기준 90 93 1 97 98 인데 한양대 성대...
-
꼭 다이어트 성공해서 인증하겠음
-
예산은 대충 10만원.누나 돈으로 지를꺼임!
-
좀 슬프네 5
다른 형누나들은 수능 한번만 치고 한국 대학에 지원도 안하고 바로 유학 보내주면서...
-
아오 피곤해 0
-
후후
-
짬? 후함?
-
. 33
-
삼수생 대학생활 1
근데...삼수해서 대학가면 같이 놀아주나요..?? 끼워줘요..?? ㅜㅜㅜㅜㅜㅜ...
-
레몬맛임
-
적기(깃발아님) 그 자체임
-
ㅈㄱㄴ
-
ㅈㄱㄴ
-
자랑스러운 아들이라며 안아주시는데 정말 표정이 밝다 그래도 수능 잘 본 보람은 있구나
-
이거 대학 입시만큼 원하는데 가기 힘듦.. 미리미리 헌혈, 자격증따서 점수채워두세용
-
담달 전역이고 지금 학교 1년 휴학은 확정이라... 성대가고싶어요ㅠ
-
예비고2 탐구 0
정시 얘깁니다 메디컬 서연고서성한 희망합니다 현역에 붙어야합니다 생지할까요 사탐할까요
-
요샌 뭘 해야될지 모르겠음.....
-
ㅇㅎㅇ님 9
님.보.고.싶.음.요. +부엉부엉님 다시한번..
-
군대가기전에 금토일에 약속 욱여넣으니까 언제 누구랑 만나기로 한지 겁나 헷갈림
-
예전껀 진짜 서울 상위랑 비교해도 안꿇렸던거같은데 약간 수능반 논술반 섞어논 느낌
-
지듣노 0
Overplayed_Thomas Day
-
이제 9
자자
-
예전에는 별생각 없었는데 지금 드가니까 그냥 ㅈㄴ 긁힘 외모로 5등급 찍힌 기분임뇨
-
26이감국어 0
프로그램언제시작해요?
-
카투사 질문받음 5
무물
-
잉
-
봇치프사에 맨날 술 퍼먹는 사람 있어요
-
오늘 운동 가서 낮 저녁 풍경 다 봐서 좋았음
-
아
-
5등급제로 바뀌면 명성 낮은 곳이라도 외고가 나을까요? 0
5등급제로 전환된다면 아무래도 생기부가 중요해지잖아요, 그러면 이름 없는 곳이라도...
-
텔그 후기 3
그냥 이대로만 가자… 나 진짜 이거면 만족하고 사수 안할게
-
지금 군입대 전까지 페스나, 제로, 페그오 단다단 약사의 혼잣말 리제로 3기...
-
다음주 금요일까지 숨참음
-
지금 유동인구 많나요? 10
없으면ㅇㅈ해도 댓안달려서상처받음
-
이딴새끼랑 걍 같은 종족이란게 존나화남 진짜 개쳐패고싶네
-
기말 끝나면 바로 알아봐야겠다
-
저도 에타 보고 알았습니다
-
무물받아요 1년 소프트웨어 스타트업하다 접음
-
한 세번 봐도 이해 못할거ㅓㅅ같은ㄷ
-
어떻게 버스로만 갈수 있게 함?
-
돈,얼굴,몸매,귀요미 셋중 뭐가 가장 뛰어나야해?
-
수학 개망해서 4떳는데 다른걸로 커버쳐서 인서울 중상위가는 경우도 있을거같은데,...
-
아직 치기 전인데 하
-
어그로 죄송합니다…. 언미물지 73 96 80 98 영어는 1입니다 이과이지만...
-
버근가 1
엄
문과 재수생은 풀수 있는 문제인가요??
마지막에 f(x) 적분을 못해서 못 풀겁니다 ㅠ g(x)까지는 문과도 구할 수 있어요
제가 원하는게 g(x)구하는거라 g(x)까지만 구하셔도 답 구한거랑 차이가 없습니다..
g(x)가 0보다 작을때는 구할수 없는 함수가 나오는거 맞나요??
0보다 작을때는 그냥 그래프 개형만 상승인지 하강인지 유추해볼수있고 식은 쓰지 못하는거 같은데.....
g(x)가 0보다 작을때는 함수를 구할 수 없어요~ 그래서 구할 필요 없도록 했구요 그리고 문제 오류 있어서 수정좀 했어요 ㅠㅠ
이런걸 어케만들수있는지 노이해 (의심이아니라 진짜대단하심)
ㅠㅠ 풀어봐주세용..
16인가요?
맞아요~
기출에서 봤던거같은데 다른느낌으로 만드셨네요
진짜 감탄 했습니다 ㅋㅋ
감사합니다 ㅎㅎ
문제엄청 좋네요ㅎㅎ 단, 부분을 못봐서 좀 헤맷어요ㅋㅋㅋ
ㅎㅎ 좋은 평 감사합니다~
힌트좀
어디까지 하셨는데용?
(가)조건으로 g'(x)가 0보다 크거나 같고
(다)조건으로 g'(x)가 0보다 작거나 같다
따라서 g'(0) = 0이고
(가)조건에 x = 0을 대입하면 f(0)는 0이 아니므로 g(0) = 0
(가)조건에 x = 2를 대입하면 g'(2) = 0
따라서 x가 0보다 크거나 같을때 g(x) = x^4+ax^3-(3a+8)x^2이고
g'(x) = x(x-2)(4x+3a+8)이다. (단, a는 상수)
(-3a-8)/4가 0이나 2가 아닐 경우
x>0인 어떤 실수 x에 대하여 g'(x) < 0 이므로 모순이다.
따라서 (-3a-8)/4 = 0 or 2이고
(-3a-8)/4 = 0일때
0(-3a-8)/4 = 2일때
0a = 16/(-3)이고 0 0이다
(가)조건에 양변을 제곱한후 g(x)로 나누어주면
f(x) = g'(x)/g(x)이고
{ln(g(x))}' = f(x)이므로
f(x)를 1부터 2까지 적분한 값 = lng(2) - lng(1) = ln16/11 = lnk
k = 16/11
11k = 16
좋은 해설입니다 ㅎㅎ
ㄷㄷ 수학전공하시나요? 대단하시네...
g'(x)가 0보다 크거나 같고 g'(0) = 0으로 g (x)의 이계도함수에서 x=0일때 0이다가 성립안하는게 x의 구간이 한정되서 그런가요?
이계도함수는 전혀 의도하질 않아서.. 무슨 의미죠..??
x>0 때 g'(x)>=0일때 g'(0)이 0(도함순의 극솟값)이길래 g''(0)=0으로 성립하는줄 알았는대 (다)조건도 있고 정의역이 전체실수가 아니라서 성립안하네요 완전 잘못풀었습니다 ㅋㅋㅋ
얻어가신게 있길 바랍니다 ㅎㅎ..