미적분1 자작
게시글 주소: https://m.orbi.kr/0008341702
오류있으면 지적점여
+수정
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
애기들만 있네
-
서리 4
약 1시간 전
-
내일나왔으먼….
-
...의료이용률 OECD 평균 가즈아~
-
자퇴안할건데 별론가
-
나를 은근 비웃고 무시하는 사람<— 어케 대처하나요? 5
앞에서 똑같이 할 말 다하고 싸울지 걍 손절치는게 맞는건지 모르겠네요
-
요즘 목표가 생겨서 수능 공부를 다시 시작해보려고 합니다 목표는 서울대 공대이고...
-
ㅈㄱㄴ 미적할때 좀 써보고싶은데 어캐쓰는지 모르겠..ㅠ 속함수를 90도 회전시키고하는거같은데..
-
소아외과 전문의가 아닌 일반외과 전문의가 응급소아환자 수술했다고 10억원 배상...
-
수학 조교 면접 0
면접 때 주로 뭐 물어보나요??? 그냥 다른 알바 면접이랑 비슷한가
-
ㄷㄷ이
-
스타벅스도 편의점도 있네 이동네사람들은 다 경운기타고다니는줄알았는데
-
이영수쌤한테 꽂혀서 차타고 왕복 1시간 지하철 2시간을 하려고 하는 걸까.....
-
누가 나좀 기절시켜줬으면
-
강사 추천좀 해주세요
-
ㅈㅈ 어디감 7
?
-
10시까지만 일본어 공부 좀 하다가 오트밀이랑 닭가슴살 쳐먹어야징
-
밥먹고바로눕기 7
-
확통특 7
확통특: 쉽게 나오면 왜이렇게 쉽게나왔지하고 3번풀어서 시간 많이걸림 어렵게 나오면...
-
컷은 모르겠고... 그냥 지1이 1 뜨고 생2가 2 떴으면 좋겠네요 ㅠㅠ
-
인스타에서 프리랜서들이 장소 구분 / 시간 구분 없이 원할때 쉬고 원할때 일한다...
-
기출들은 다 빡셌는데 왜이렇게 쉬운것이냐 잘쓴거 같긴 한데 너무 쫄리는데
-
전문대 지방대 어디쯤 갈 수 있는지 알려줘
-
어케 놀지 5
뭘 해야 잘 놀 수 있을까
-
시대인재 현강 0
시대 현강 국수지구 기출도 다루나요?
-
심사숙고하는 성격이면 인생 사는 데 좋을 것 같지만 꼭 그렇지도 않더라구요...
-
육군에서 26수능을 볼 생각입니다. 지금 일병2호봉이고 병장 달때쯤 수능을...
-
이이잉 ㅜㅜ
-
병역 문제가 최악이구만 25
큰 목표를 세우고 싶은데 여기 발목이 잡혀서 끝없이 계획이 지연되는구나
-
아니었구나
-
상평시절 17이전말고 18부터 공부하는 게 맞죠?
-
난이도: 하~중 타임어택: 중 미적: 기본적인 개념에 충실 딱히 어려운건 없었음...
-
1컷 얼마임? 고인물들 고려해서
-
N수생이고, 올해 지방 의대는 가능한 성적을 맞았지만, 한 두개만 더 맞았으면 하는...
-
국어와 관련하여 질문을 받아보면 많은 학생들이 글을 ‘이해‘하는것이 무엇인지...
-
아침 6시에 깨는 이 갓생 뭐임?
-
평소에 공부할때 틀리면 100프로 실력이라고 생각하고 공부해야함 애초에 그런걸...
-
공기업vs약사 6
공기업 초봉 4000~5000만원 평균연봉 8000~1억원대 약사 서울권 약...
-
Yg는 진짜 아웃풋이 ㅋㅋㅋㅋㅋ 걸그룹은 블핑 보이그룹은 빅뱅 ㅋㅋㅋㅋㅋㅋ
-
그래도 ㄱㅊ은 편임? 일단 유리한 정황인거지?
-
에스컬레이터 있는 학교는 첨보네 ㄷㄷㄷ 310건물이 유독 좋은건가요..
-
오쿠리시마스
-
to 친애하는 오르비언님 - 이정도론 메디컬 힘든가요..? 8
아무래도 영어 3이 치명적으로 작용하겠죠..? 혹시나 대략적인 라인 알고계신다면...
-
문과 설대식 409.x 학부대학 가능하다고 보시나요 0
내신 bb ~ cc 기준 아 둘 중 뭐냐에 따라 여부가 달라지나
-
도착 3
휴 안 늦음
-
내년에 동사 한번 응시해 보려 하는데, 작년 n제도 사서 풀어봐야 할까요??
-
1타 관계없이 자신한테 잘 맞는 강사 들으면 되는거 알구있는데그래도 추천...
-
충주로 가요 10
건글의 면접을 보러 가요
-
미적 84인데 0
걍 2등급인거 받아들였음 나는
-
택시타고 가는데 빠듯하다
선라이크.
마지막에 잘못적었어요 ㅠㅠ f (x)의 x절편값이 최소일때로 생각해주세요
수정완료
f(0)이 음수인지 양수인지 나오면 더 깔끔하지않을까요오? 인터그랄f(x) -2에서 0까지가 max니까 기울기가 음수인 일차함수건가... (수정전)
(가)조건 잘 모르겠... 미2인줄알고 바로 e떠올렸는데ㅠㅠ 어캐 푸나요?
가 조건풀면 음수인지 양수인지 나와요
(가)조건이 로그가 정의되야 되는 조건이니까
밑이 0보다 크고 1이 아니어야되고 진수도 0보다 커야되니
g'(x)>0 g'(×)가 1아니고 g (x)>0 까지 뽑아내고
자연수가 되야하고 g (x)가 다항함수니까 g (x)차수를 k차로 잡고 (가)식= n (자연수)놓고 풀면 n,k가 나올거에요
그다음은 g'(x) ^n = g (x)또 풀고..
그다음은h 풀고.. g(x)찾는게 어려울거에요
23나옵니다 확인해주세요
오답
어떻게 푸셨나여
N=2나오고 g(x)는 2차 나오고 (가)조건 이용하면 g의 도함수는 1차고 f의 x절편이 최소가 되려면 (0,1)을 지나야 되니 g= 1/4(x+2)^2 나와서 y=0 x=2,-2 f( x) 로 둘러쌓인 넓이를 구했죠
(나)조건은 1차함수라고 해석해서 x+1나왔습니다
x절편 최대로 했어야 했네요.. ㅈㅅ 다 맞게푸신거 맞아여
g(x) 다항함수인건가요?
아 언급있네요 죄송함다
그리고 x절편이 최대일때 아닌가요 그럼 그때 x절편이 -1인데여
그럼 답 17/3 20나오네요
네네 맞아여.. 오늘 학교에서 생각나서 수정했는데 잘못적어도 제대로 알아 들으시네여 ㅋㅋ
ㅋㅋㅋㅋ 문제가 그럴 수 밖에 없더라구여 ㅋㅋㅋㅋ 이 문제 (나) 조건은 규토 미적에서 이미 나왔던 표현이군여.. 뭐 문제 전체를 평가하자면 전 제가 풀었던 자작 문제중 손꼽을 정도입니다 정말 참신하고 재밌었어요 ㅋㅋㅋㅋㅋ 이 문제 혹시 제가 타이핑해서 출처를 밝히고 써도 될까요 정말 좋았어요
네네 그럼여 저도 규토님 조건보고 썻어요 ㅋㅋ
원래의도가 작년 b형30번처럼 식하나만 주고 그 식에서 최대한 많이 조건을 뽑아내서 조각하나하나 맞추도록 하는 문제를 만드는 거였는데 제 생각엔 h결정하는게 좀 아쉬운듯 해요 x절편말고 참신한게 없을까..하는
저는 지금도 충분히 좋아요 ㅋㅋ 제가 이 문제를 처음 봤을때 조금 당황했거든요 ㅋㅋㅋ 상당히 생각할 게 많더라구요 ㅋㅋ g'(x)>1을 결국 유도하게 하는게 정말 좋았어요 이건 해설도 써봐야겠네요 굳굳입니다 ㅎ
감사함다 ㅎㅎ
아 그리고 타이핑쳐서 문제 만드실 거면 x=-2,2 와 y=f (x)로 둘러쌓인 부분 넓이보다
그냥 인테그랄 -2 ~ 2 |f (x)| 가 더 깔끔할 것 같아요 보시고 그냥 더 괜찮아 보이는걸로 만들어주세요
네네 ㅋㅋ 해서 올려드릴게여
올려드렸어요~