수학에서 모양 바꾸는게 안익숙하네여..
게시글 주소: https://m.orbi.kr/0008956499
아 이걸 어떻게 해야하려나
수능완성 적분 2번 같은건 모양이 한눈에 다들 들어오세요?
xf'(x) - f(x) = x^2cosx
답지보고 저걸 어떻게 생각해야 될까 시험장에서 이게 안떠오를것 같은데....
라는 고민중입니다. 갓갓 오르비언들은 보이려나
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
오늘의 우리를 기록해 어제의 우리를 위로해 내일의 걱정은 뒤로해
-
정법 1번, 사문 11번 개쉬운문제들 정답 4고 기억도 나는데 가채엔 3이라...
-
수영장파티케틀 0
슴
-
얼버기 12
모두 좋은 아침
-
원인있음의사난수 원인없음진성난수 제1원인은->원인없음 제1원인은->진성난수...
-
귀여워! 12
-
3,4등급 애들은 재수 어디서 함? 시대 강대 미만 다 비슷함? 3,4등급 재종기숙 추천좀
-
페북느낌난다
-
오디다가 하시나용
-
모닝여캐투척 21
짠
-
'현장감' 이 차이가 정말 큼 화작은 아무리 어려워도 공부가 잘돼있다면 시험장에서도...
-
부산대 인문논술 0
부산대 인문논술 3-2 소문항 한개 못적었으면 무조건 탈락인건가요? 앞에껀...
-
https://naver.me/GpC6rq15 이지랄 ㅋㅋㅋㅋㅋㅋㅋ
-
대 리 런 4
약코 GOAT
-
그때부터는 꿀이 아니라는거군요 그럼 존버가 승리하는것?
-
인스타 릴스에 중드 계속 나오는데 찔끔찔끔 보여주고 딴데선 못찾겠어서 정신이 나갈것 같음
-
아니면 따로 낙지에서 만든 변표공식이 있나요?
-
야채음료 먹음 2
오늘 먹을 메뉴가 다 야채가 부족해 이거라도 먹어야지
-
한국국립대학교??? 10
너무 보통명사 아닌가 얘네 이걸로 이름 바꾸려고 이러는 것 같은데 흠?
-
얼버기 5
-
아오 습해 1
비와서 축축해
-
세상은 올바른 선택을 하는 것이 그 무엇보다도 중요하다는 것.
-
슬슬 자볼까 1
겉날개얻고 몬스터팜 만들었으니 꿀잠자러 고고
-
얼버기 4
인녕하세요
-
지금까지는 맞는말같긴함 작수때 언매미적물1지1으로 89 89 2 88 95 맞았는데...
-
워드마스터2000 끝냈고(3회독) 암기율은 80정도? 제가 단어가 약헤서 다른...
-
오늘은 뻘글 안 쓰고 일만 할 겁니다
-
힘을 좀 내줘 씨발럼아!!
-
영어 과외 질문 0
고등학교 3년 내내 모고 1등급은 놓친 적이 없고 수능은 97점 나왔습니다. 올해...
-
아침 먹으면서 쿵짝짝 쿵짝짝 하면서 토스어플 딱 까봤는데 떡락한 거 보고 나이스...
-
진단서 써줌? 기말 끝나고 링거 맞을건데 병원에서 진단서 써주는지 궁금함
-
군대 안가면 좋겠다는 말도 안되는 망상을 해본다
-
저 남르비예요.. 오해하시는 분들이 많으신 것 같길래
-
하나 사고싶은데... 비싸...
-
얼버기 0
우헤헤
-
아 어제 할껄 4
비 오고난 후 추워질텐데 역시 할 일은 바로바로 해야 해
-
사실 출근안했고 아침먹는중임 가기싫다
-
이거 좀 답해줘 3
9시 수업있는데 원래 2시 수업도 있는데 싸강됨.. 귀찮은데 걍 모자쓰고 갈까??...
-
아학교가기싫어 6
비는 또 왜 오는건데ㅠㅠ 지금 결석할지말지 고민즁잉대ㅜㅜㅜ
-
헤헤
-
곧 7시가 되기 때문입니다 오늘도 파이팅
-
뻘소린데 0
요즘 물가에 질식할 것 같음 걍 날 죽여라
-
밤 왜 샜지..... 수시러들 암튼 존경함
-
일어나
-
쿠팡 힘들다 1
이걸 연속으로 뛰는 사람은 대단하네 ㄷㄷ
-
근데 그 시절이 너무 그리워 꼴에 첫 대학생활이라고 마음이 조금 부푼 것도 있었고...
-
결국 5수를 하나. 사탐런 진지하게 고민해봐야되나
-
트리플에스 끝!
양변 미분을 때리세요!ㅋㅋㅋ
그렇게 풀면 적분상수 때문에 계산이 잘 안되지 않을까요?
f(ㅠ) 있으니깐 f'(ㅠ)도 구할수있을거같은데요?
밑에 저보다 훨씬 훌륭한 분께서 잘 써 주셨네요..
아 그냥 적분상수를 반대편으로 넘겨서 같이 계산해주면 되는구나....
댕청한 생각하고있었네요
C1 c2 두개 나오는데 어떻게하지 이러고 앉아있었던...
xf'(x)에서 의심되지 않나요?ㅋㅋ
저는 f(π) 값이 주어졌길래 f(x)에 대해 정리해서 미분 적분해서 푸는줄 알았어요
그래사 어떻게하는거에요??ㅜㅜ
양변 x^2로 나누고 몫의 미분법 형태에서 거꾸로 적분하는 거 같네요
근데 이 문제에 한해서는 양변 미분해서 좌변 항을 지워주는 게 더 실전적인 느낌이 들기는 합니다
양변 미분해서 f''(x) 로 정리한 후 다시 부정적분 두번해서 풀면
적분상수때문에 계산이 잘 안되는것 같은데요
내가 못하는건가..
양변 미분했을 때 우변 식이 좀 거지같아서 직접 끝까지 해보지는 않았지만
문제에서 f(pi)의 값을 줬다고 하셨고 추가로 원래의 식에서 양변에 0을 대입하면 f(0)=0도 구할 수 있기 때문에 적분상수 두 개 전부 구할 수 있습니당
구할 수 있어요!감사합다
수완은 적분이 제일 어려운것 같은 기분이...
한완수미적분법 푸세요 의식의흐름으로 풀수있음
한완수 괜찮나요?
문제 어려울까봐 오르비 문제집은 구입이 좀 무서워서요 ㅋㅋ
알텍이랑 비교했을때 난이도가 어느정도인가여
음 알텍을 안풀어봐서 잘모르겠지만 대부분 기출 21,29,30문제들이 많은거같아요.쉬운29,30도 있고 정답률5퍼도안되는 30도 있고요. 대략 2등급초반-1컷이풀면 50문제중에 43-5문제 정도맞아요.
근데 한완수는 문제보다는 내용이 정말 좋아요.개념서에서는 절대로 설명해주지않는 것들(킬러를 풀려면 무조건 알아야하는)이 많아서 1컷 걸칠때 풀었는데도 다 풀고나면 얻어가는게 많은 느낌? 그리고 그 내용을 정확히 연습할수있는 문제가 단원끝나면 바로있어서 좋았어요
이제 막 3등급 진입 한 저한테 맞을 수도 있을것 같다는 생각이 드는 설명이네요.
이제 막 21 29 30 분석하면서 푸는 연습중이라 후기 감사함다.
넵!
이런 문제들은 결국 양으로 감을 잡는게 답이겠네요
저번 6월 29번에서도 식변형에서 막혀서 계속 고민이였거든요
x제곱으로 나누면 f(x)/x 미분도 가능할거같고 양변미분하면 없어지기도 할거같고..; 그런건 감이 중요해요. 많이 본놈이 유리. 근데 수능에는 발상적인면이 너무 강한 문제는 잘안나와요.
나만 x=/0조건 걸고 양변 x^2으로 나누고 적분하는 생각하나..