[카이독] GEAR 모의고사 피드백을 구합니다.
게시글 주소: https://m.orbi.kr/0009460556
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
닉네임이 이꼴인 이유 12
아싸라서 사진찍는게 취미임
-
음... 0
술 마시고 왔더니 메인글 가있던 썰 푼다...
-
당연히 시위하는 학생들 아니고 교수님들도 안타깝지만 그냥 아무것도 모르고 성적맞춰...
-
대학가고싶다 4
걍존나리셋돌리고싶다는뜻
-
ㅇㅈ 1
어딜 감히
-
크아악 4
대학가고 싶다 정확히는 옮기고 싶다 수능날 아파서 결국 원서질도 못 해보는게 너무...
-
저다들많이좋아해요 여러분이제유일한친구에요 다들잘됐으면좋겠어요
-
ㅇㅈ 5
-
국어 수학 영어 정법 사문 한국사 80 98 3 96 96 1 영어 한국사는...
-
현재 7~8칸이면 걍 발뻗고 성적발표까지 누워도 댈가용
-
아그냥 우울하네 3
연세대도 분명 좋은 학굔데.. 머리로는 알고 있는데.....
-
おやすみ 15
-
ㅇㅈ은 다시 봉인 군대가기전에 한번더 할 수도?
-
인증메타후기 4
나랑같이n수해서의대가자
-
자야지 1
눈이 감기네
-
후다면 너무 슬플거같음
-
문재인 정부 사드 도입 늦추기 위해 중국·시민단체에 기밀 유출 의혹…검찰 수사 착수 1
문재인 정부 당시 안보라인을 책임지던 고위직 인사들이 사드(THAAD·고고도 미사일...
-
흠
-
반수 성공하고 바로 입대, 의대 증원하길래 올해 수시 준비해서 한 번 더 뛰어들어서...
-
스펙 평가좀 2
숏치고 조졋음뇨
-
아니면 무조건 시험 종료시까지 고사장에 있어야하나요?? 대학 시험처럼 시험치고...
-
형아... 3
웅웅
-
어디가 좋을까요?
-
턱걸이 20개는 땡겨야 남자라고 생각함뇨이
-
S7 액정이 좀 깨져서 터치가 좀 답답해졌어요ㅠ 액정가는데 16만원정도...
-
'사드' 지연 위해 중국에 2급 기밀 유출…도마 오른 文 정부 안보관 0
전임 문재인 정부와 더불어민주당의 안보관이 도마에 올랐다. 최근 감사원이 문재인...
-
ㅇㅈ 13
펑
-
ㅈㅅㅎㄴㄷ.. 1
-
입실시간 제외 순 시험시간이요!!
-
ㅇㅈ 6
펑.
-
진짜 완벽한 고대상이다..
-
옛날엔 현실의 예쁜 사람 보면 기분 좋아지고 그랬는데 이제는 그냥 아무런 감정이...
-
ㅇㅈ 13
못 생김 주의) 펑
-
ㅠㅠ
-
여잔데 친구없을까봐 ㅇㅇ
-
본거또보고 17
다음에혼자인생네컷이라도찍으러갈께요
-
ㅇㅈ 4
펑
-
미쿠짤 1
영역전개 “미쿠만발”
-
아무도 안 보겠지???
-
재탕올리면 본거또보고 라고댓달릴 확률99%라 못하겠어요
-
원래 멀티를 개잘햇거든요? 근데 요즘은 하나에 꽂히면 그냥 그것밖에 못해요 예를들어...
-
"도미노 현상" 공장 줄줄이 폐쇄…'K-철강' 쇠퇴의 그늘 0
산업의 쌀이라 불리는 한국의 철강 업체들이 줄줄이 공장 문을 닫고 있습니다. 중국의...
-
요즘 헬스하는데 0
진짜 근육통이 너무심함 미치겠따
-
일주일에 150분 이상 운동했더니 나타난 효과... 평균 사망 위험 22% ‘뚝’ 0
빠르게 걷기, 자전거 타기 등 중강도 신체활동(PA)을 일주일에 150분 이상 하면...
-
ㅇㅈ 2
사실 그런 건 없고 제가 좋아하는 민지 짤 보고 가세요
-
거기 지나가는 당신! 31
여캐일러 하나 주고 가요
-
그것은 바로 주식 안 하기! 주식 하는 사람들이 돈을 잃기에 나는 가만히 있으면...
-
쪼끄매서 귀여움
-
ㅇㅈ 16
숏충이의말로ㅇㅈ
-
물2 어카디 1
현역이고 물1베이스 나름 있는데 1) 물2 과외받으면서 전적 의존(나름 고수에...
내일풀예정!
96점 받은 현역입니다. 좀 늦게 시작했기도 하고, 몸도 좀 안 좋아서 30번 풀다가 말았네요.
다시 보니까 못 풀 만한 문제는 아니었네요. 29번이 약간 약하기는 했는데, 그건 30번이 좀 어려워지면서 균형이 맞는 것 같습니다. 다만, q가 0이 되버리는 경우는 잘 없어서 조금 놀랐네요. 어쨌건 좋은 문제 감사합니다!
30번 해설 셋째줄에서 여섯째줄로 가는 논리가 f(x)+f(-x)=<0이기 때문에 f(x)=<0이라고 판정하신건가요? 제가 이해한 게 맞다면 이는 명백히 틀린 논리입니다. 반례로는 f(x)=-x등 얼마든지 잡을 수 있습니다.
출제자분의 의도가 그렇지 않다면 여섯째줄의 f(x)=<0은 왜 가정했는지 궁금합니다. 그것도 아니라면 k오르비큐에서 평점이 높은것 같아서 수업자료로 쓰는데 도저히 안풀려서 질문드립니다.
30번 해설을 작성할 때 정신없이 서술한 감이 없지 않아 있는 것 같습니다.
함수 g(x)가 기함수이고 감수함수이므로
g(f(x))+g(x+1)<=0 이 성립하려면
f(x)와 x+1의 부호가 반대일 때 f(x)와 x+1의 절댓값의 대소관계가 해설과 같아야 한다는 표현이었습니다.
x+1<=0이고 f(x)>=0인 경우도 있는데 이는 간과한게 맞는 것 같습니다.
빠른 시일 내에 해설에 반영하겠습니다.
이해 안되는 부분이 더 있으시다면 말해주세요.