공간도형 & 벡터 : 개념에서 기출까지

Part 1. 공간도형

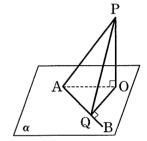
01_

평면 α 위에 있지 않은 한 점 P에서 α 에서 내린 수선의 발을 O라 하고 O에서 α 위의 선분 AB에 내린 수선의 발을 Q라 하자. $\overline{OP} = 4$, $\overline{AQ} = 2\sqrt{6}$,

 $\overline{AP} = 7$ 일 때, \overline{OQ} 의 길이는?

- \bigcirc $\sqrt{6}$
- $\bigcirc 2\sqrt{2}$
- ③ 3

- $4) \sqrt{10}$
- ⑤ $2\sqrt{3}$

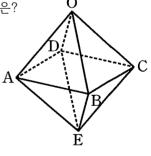


02.

오른쪽 그림과 같은 정팔면체에 대하여 보기 중 옳은 것을 모두 고른 것은?

□보기□

- ¬. OA와 꼬인 위치에 있는 모서리는 4개이다.
- \Box . \overline{AB} 와 \overline{OC} 가 이루는 각의 크기는 90° 이다.
- \Box . BE와 \overline{OC} 가 이루는 각의 크기는 60° 이다.

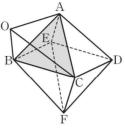


- \bigcirc
- ② L
- 37, L 47, E 5 L, E

공간도형 & 벡터 : 개념에서 기출까지

03.

그림과 같이 한 변의 길이가 1인 정팔면체 ABCDEF와 정사면체 O-ABC의 한 면 ABC를 일치시켜 만든 입체도형이 있다. 선분 OC와 평행한 모서리의 개수는?



 \bigcirc 1

(2) 2

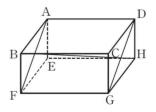
③ 3

4 4

(5) **5**

04.

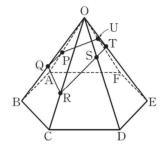
그림과 같이 $\overline{AB}=\overline{AE}=2$ 이고, $\overline{AD}=4$ 인 직육면 체에서 선분 BH와 면 AFGD가 이루는 각의 크기 를 θ 라 할 때, $36\cos^2\theta$ 의 값을 구하시오.



공간도형 & 벡터 : 개념에서 기출까지

05_

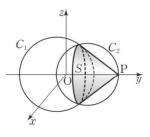
한 모서리의 길이가 6인 정육각뿔 $O-ABCDEF에서 \overline{OA}$, \overline{OB} , \overline{OC} 를 2:1로 내 분하는 점을 각각 P. Q. R라 하고. \overline{OD} . \overline{OE} . OF를 1:2로 내분하는 점을 각각 S. T. U라 하 자. 이 육각형 PQRSTU를 밑면 ABCDEF로 정사영 시킨 도형의 넓이는?



- (1) $12\sqrt{2}$ (2) $14\sqrt{2}$ (3) $12\sqrt{3}$ (4) $16\sqrt{2}$
- (5) $14\sqrt{3}$

06.

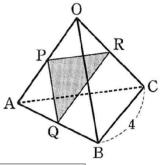
두 구 $x^2+y^2+z^2=64$. $x^2+(y-5)^2+z^2=49$ 를 각각 C_1 , C_2 라 하자. 두 구 C_1 , C_2 가 만나서 생기는 원을 S라 하고, 구 C_2 와 y축의 두 교점 중에서 원점으로 부터 더 멀리 떨어진 점을 P라 하자. 원 S를 밑면으 로 하고 점 P를 꼭짓점으로 하는 원뿔의 부피를 V라 할 때, $\frac{V}{\pi}$ 의 값을 구하시오.



공간도형 & 벡터 : 개념에서 기출까지

07.

오른쪽 그림과 같이 한 모서리의 길이가 4인 정사면체 OABC에서 OA, AB, OC의 중점을 각각 P, Q, R라 하자. 평면 PQR와 평면 ABC가 이루는 예각의 크기를 θ 라 할 때, 보기 중 옳은 것을 모두 고른 것은?



¬. △PQR는 직각 이등변 삼각형이다.

ㄴ. \triangle PQR의 평면 ABC 위로의 정사영의 넓이는 $\frac{2\sqrt{3}}{3}$ 이다.

$$\Box$$
. $\cos \theta = \frac{\sqrt{3}}{3}$ 이다.

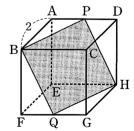
① 7 ② 7, L ③ 7, C ④ L, C ⑤ 7, L, C

08.

오른쪽 그림과 같이 한 모서리의 길이가 2인 정육면체에서 AD, FG의 중점을 각각 P, Q라 할 때, □PBQH의 평면 EFGH 위로의 정사영의 넓이는?

- ① 1
- \bigcirc $\sqrt{2}$
- $\sqrt{3}$

- 4) 2
- (5) $\sqrt[3]{2}$

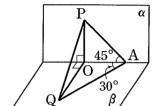


공간도형 & 벡터 : 개념에서 기출까지

09.

오른쪽 그림과 같이 $\angle PAO = 45^{\circ}$, $\angle QAO = 30^{\circ}$, $\overline{PA} = 3\sqrt{2}$, $\overline{PQ} = \sqrt{3}$, $\overline{PO} \perp \overline{AO}$, $\overline{QO} \perp \overline{AO}$ 일 때, 평면 α 위의 삼각형 APO의 평면 β 위로의 정사영의 넓이는?

- ② $2\sqrt{3}$
- $3 \frac{7\sqrt{3}}{4}$



10_

한 변의 길이가 a인 정사각형 모양의 종이 ABCD를 대각선 BD를 접는 선으로 하여 선분 AB와 선분 BC가 이루는 각이 $60\,^{\circ}$ 가 되도록 접었을 때, 삼각형 ABD의 평면 BCD위로의 정사영의 넓이는?

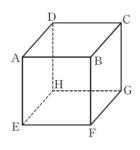
- ① 0
- 2 1
- ③ $\sqrt{2}$

- ④ 2
- (5) $2\sqrt{2}$

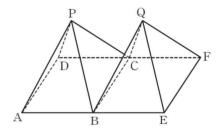
공간도형 & 벡터 : 개념에서 기출까지

11.

그림과 같은 정육면체 ABCD-EFGH에서 면 ADGF와 면 BEG의 교선과 면 EFGH가 이루는 예각의 크기를 θ 라 할 때, $3\cot^2\theta$ 의 값을 구하시오.



12. 그림과 같이 모든 모서리의 길이가 2인 정사각뿔 P-ABCD, Q-BEFC가 한 평면 위에 놓여있다. 면 PAD의 내접원 을 S라 하고 S를 면 PBC위로 정사영한 도형을 S_1 이라 하자. 도형 S_1 을 다시 면 QBC 위로 정사영한 도형을 S_9 라 하고. S_2 를 면 QEF 위로 정사영 한 도형을 S_3 라고 할 때, S_3 의 넓이는?

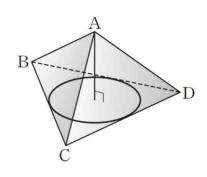


- ① $\frac{\pi}{27}$ ② $\frac{\pi}{36}$ ③ $\frac{\pi}{54}$ ④ $\frac{\pi}{81}$ ⑤ $\frac{3\pi}{108}$

공간도형 & 벡터 : 개념에서 기출까지

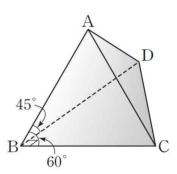
13. 부피가 16인 사면체 ABCD가 있다. 삼각형 BCD의 둘레의 길이는 8이고 넓이는 12이다. 꼭짓점 A에서 삼각형 BCD 에 내린 수선의 발이 삼각형 BCD의 내접원의 중심과 일치

실이는 8이고 넓이는 12이다. 꼭짓점 A에서 삼각형 BCD에 내린 수선의 발이 삼각형 BCD의 내접원의 중심과 일치할 때, 세 삼각형 ABC, ACD, ADB의 넓이의 합을 구하시오.



14.

그림과 같이 \angle CBA= 60° , \angle CBD= 90° , \angle ABD= 45° 인 사면체 ABCD가 있다. 평면 ABC와 평면 ABD가 이루는 각의 크기를 θ 라 할 때. $60\cos^2\theta$ 의 값을 구하시오.



공간도형 & 벡터 : 개념에서 기춬까지

Part 2. 공간좌표

15.

두 점 A(2, -3, -1), B(1, -2, 1)이 있다. $\triangle ABC$ 가 정삼각형이 되도록 xy평면 위에 점 C를 잡을 때, C는 2개 존재한다. 이 두 점 사이의 거리는?

- ① $2\sqrt{2}$ ② $2\sqrt{3}$ ③ $3\sqrt{2}$ ④ $3\sqrt{3}$ ⑤ $4\sqrt{3}$

16.

점 (1,1,3)을 지나고, xy평면, yz평면, zx평면에 동시에 접하는 두 구의 겉넓이의 합은?

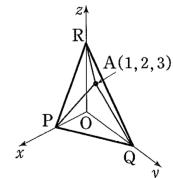
- ① 48π ② 52π ③ 56π ④ 60π ⑤ 64π

17.

오른쪽 그림과 같이 점 A(1,2,3)에서 x축, y축, z축에 내린 수선의 발을 각각 P, Q, R 이라 하자. 이 때, 사면체 APQR의 부피는?

- $\bigcirc \frac{\sqrt{5}}{3}$
- $\sqrt{3}$
- ③ 2

- $4 \frac{7}{3}$
- $\boxed{5}$ $\sqrt{5}$



고간도형 & 벡터 : 개년에서 기출까지

18_

좌표공간 위의 세 점 A(1, 1, 2), B(-1, 0, 1), C(2, 0, -3)이 있다. 네 점 A. B. C. D에 의하여 만들어지는 사각형이 평행사변형이 되도록 하는 점 D가 3개 존재하고, 그 점들을 각각 D_1 , D_2 , D_3 라 할 때, 삼각형 $D_1D_2D_3$ 의 무게중심이 (a, b, c)이다. 10(a+b-c)의 값을 구하시오.

19_

두 구 $x^2 + (y-1)^2 + (z-2)^2 = 4$. $(x-1)^2 + (y+1)^2 + z^2 = 1$ 에 그을 수 있는 모든 공통외접선에 의하여 만들어지는 직원뿔대의 윗면의 넓이와 아랫면의 넓 이의 합은?

20. 좌표공간에 두 점 A(6, 0, 0), B(0, 8, 0)이 있다. 삼각형 ABC의 넓이가 10 이 되도록 하는 점 C의 자취를 T라 할 때. 원점 O와 도형 T위의 한 점까지의 거리의 최솟값은?

- \bigcirc 2
- $2\frac{11}{5}$ $3\frac{12}{5}$ $4\frac{13}{5}$ $5\frac{14}{5}$

공간도형 & 벡터 : 개념에서 기춬까지

21.

좌표공간에 있는 구

$$x^{2}+(y-3)^{2}+(z-4)^{2}=3^{2}$$

의 중심에서 y축에 내린 수선의 발을 P. z축에 내린 수선의 발을 Q라 하자. 구와 직선 PQ가 두 점에서 만날 때, 두 점 사이의 거리는?

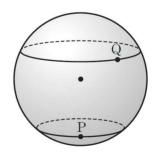
22.

그림과 같이 구

$$(x-1)^2+(y-2)^2+(z-4)^2=13^2$$

위를 움직이는 두 점 P. Q가 있다. 점 P의 자취의 z좌표가 -8. 점 Q의 z좌표가 9일 때, 두 점 P. Q에 대하여 \overline{PQ}^2 의 최솟값은?

- (1) 322 (2) 325 (3) 332 (4) 335
- (5) 338



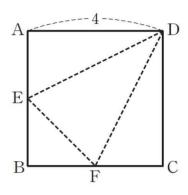
공간도형 & 벡터 : 개념에서 기출까지

23.

그림과 같이 한 변의 길이가 4인 정사각형 ABCD에서 \overline{DE} . $\overline{\mathrm{DF}}$. $\overline{\mathrm{EF}}$ 를 접는 선으로 하여 접었더니 꼭짓점 A. B. C가 모두 한 점에서 만나서 사면체 ABCD가 만들어졌다. 사면 체 ABCD의 부피는?

- ① $\frac{8}{3}$
- **2** 3
- $3\frac{10}{3}$

- $4 \frac{11}{3}$
- (5) **4**



24.

좌표공간에 구 $x^2+(y+2)^2+(z-5)^2=4$ 와 xy평면 위에 원 $(x-3)^2+(y-4)^2=5$ 가 있다. 원 위의 점 P에서 구에 접선을 그었을 때. 이 접선의 길이의 최솟값은?

- (1) $2\sqrt{10}$ (2) $\sqrt{41}$ (3) $\sqrt{42}$ (4) $\sqrt{43}$ (5) $2\sqrt{11}$

공간도형 & 벡터 : 개념에서 기춬까지

Part 3. 벡터

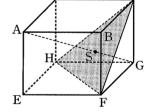
25.

 \triangle ABC의 내부의 한 점 P가 있고, \overline{AP} 의 연장선이 \overline{BC} 와 만나는 점을 D라 하자. $\triangle PAB : \triangle PBD : \triangle PDC = 3 : 2 : 5$ 이고, $\overrightarrow{AB} = \overrightarrow{b}$, $\overrightarrow{AC} = \overrightarrow{c}$, $\overrightarrow{AP} = x\overrightarrow{b} + y\overrightarrow{c}$ 라 할 때, x + y의 값은?

- $2\frac{5}{6}$ 3 1 4 $\frac{7}{6}$ 5 $\frac{4}{3}$

26.

직육면체 ABCD-EFGH에서 대각선 AG와 평면 CHF의 교점을 S라고 할 때, $\overrightarrow{AS} = \overrightarrow{mAG}$ 인 실수 m에 대하여 6m의 값을 구하여라.



27.

좌표평면 위에 $|\overrightarrow{OA}| = |\overrightarrow{OB}| = 4$ 이고 $\angle AOB = \frac{\pi}{3}$ 인 세 점 O, A, B가 있다.

 $x \ge 0$, $y \ge 0$, $x + \frac{y}{3} = 1$ 일 때, $\overrightarrow{OP} = x \overrightarrow{OA} + y \overrightarrow{OB}$ 로 주어진 점 P가 그리는 도형의 길이는?

- ① $3\sqrt{6}$ ② $3\sqrt{7}$ ③ $4\sqrt{6}$ ④ $4\sqrt{7}$ ⑤ $7\sqrt{3}$

28.

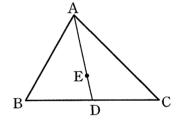
두 벡터 $\stackrel{\rightarrow}{a}=(1,0,2)$, $\stackrel{\rightarrow}{b}=(1,1,0)$ 이고 $\stackrel{\rightarrow}{c}=\stackrel{\rightarrow}{a}+\stackrel{\rightarrow}{tb}$ 라 할 때, $\stackrel{\rightarrow}{a},\stackrel{\rightarrow}{c}$ 가 이루는 각의 크기가 $\stackrel{
ightarrow}{a}$, $\stackrel{
ightarrow}{b}$ 가 이루는 각의 크기가 $\frac{1}{2}$ 이 되도록 하는 양수 t의 값은?

- ① $\sqrt{2}$ ② $\frac{3}{2}$ ③ $\frac{\sqrt{10}}{2}$ ④ $\frac{\sqrt{11}}{2}$ ⑤ $\sqrt{3}$

29.

 $\triangle ABC$ 의 변 BC 위에 한 점 D가 있고 선분 AD위에 한 점 E가 있다. $\overrightarrow{AE} = \frac{1}{2}\overrightarrow{AB} + \frac{1}{5}\overrightarrow{AC}$ 이고 $\overrightarrow{AD} = 50$ 일 때, \overrightarrow{AE} 의 길이는?

② 30 ⑤ 35 ③ 32



30.

 \triangle ABC의 무게중심을 G라 하고 동점 P에 대하여 $|\overrightarrow{PA}+\overrightarrow{PB}+\overrightarrow{PC}|=6$ 일 때, $\overrightarrow{GQ}=\overrightarrow{GO}+\overrightarrow{GP}=$ 만족하는 점 Q가 그리는 도형의 길이는? (단, O는 원점)

- ① 10
- ② 12
- 34π
- 406π
- \bigcirc 9π

공간도형 & 벡터 : 개념에서 기출까지

31.

한 모서리의 길이가 1인 정사면체 OABC에 대하여

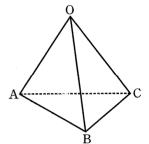
 $\overrightarrow{x} = \overrightarrow{lOA} + \overrightarrow{mOB} + \overrightarrow{nOC}$ 일 때

 \overrightarrow{x} • $\overrightarrow{OA} = 4$, \overrightarrow{x} • $\overrightarrow{OB} = 2$, \overrightarrow{x} • $\overrightarrow{OC} = 6$ 을 만족한다. 이 때, l+m+n의 값은?

- ① 3

③ 5

- **4 6**
- (5) 7

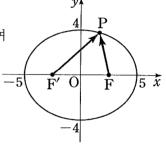


32.

타원 $\frac{x^2}{25} + \frac{y^2}{16} = 1$ 의 두 초점 F, F'과 타원 위를 움직이는 점 P에 대하여

 $\overrightarrow{FP} \bullet \overrightarrow{F'P}$ 의 최댓값은?

- ① 14
- 2 16
- ③ 18



4 20

(5) 22

33.

오른쪽 그림과 같이 반지름의 길이가 1이고 중심각의 크기가 $\frac{\pi}{3}$ 인

부채꼴 OAB가 있다. 호 AB 위를 움직이는 두 점 P, Q에 대하여 보기에서 옳은 것을 모두 고른 것은?

보기

¬. OP • OQ의 최댓값은 1이다.

L. | OP + OQ | 의 최댓값은 2이다.

c. | OP - OQ | 의 최솟값은 1이다.

1 7

② L

③ ¬, ∟

④ ¬, ⊏

(5) 기, L, E

34.

좌표공간에서 $\overline{\mathrm{AB}} = 6$ 인 두 점 A, B가 직선 $l: \frac{x+2}{2} = y-2 = \frac{z-4}{-1}$ 위를 움직이고,

점 C는 직선 $m: \frac{x}{2} = y = \frac{z}{-1}$ 위를 움직일 때, \triangle ABC의 넓이는?

- ① $2\sqrt{2}$ ② $4\sqrt{2}$ ③ $6\sqrt{2}$ ④ $9\sqrt{2}$ ⑤ $10\sqrt{2}$

35.

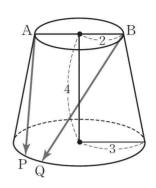
직선 $l:x-1=\frac{y-2}{-1}=\frac{z-1}{2}$ 위에 한 변 BC가 포함되는 정육각형 ABCDEF가 있다.

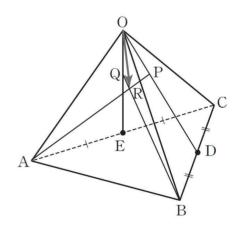
점 A의 좌표가 A(1, -2, 3)일 때, 이 정육각형의 한 변의 길이는?

- ① $\frac{4\sqrt{5}}{3}$ ② $\frac{4\sqrt{6}}{3}$ ③ $\frac{4\sqrt{7}}{3}$

공간도형 & 벡터 : 개념에서 기출까지

36. 그림과 같이 윗면과 아랫면의 반지름의 길이가 각각, 2, 3이고 높이가 4인 원뿔대가 있다. 윗면에서 임의의한 지름을 잡고 양 끝점을 각각 A, B라 하고 아랫면의원주 위에 임의의 두 점 P, Q를 잡는다. 이때, | AP+BQ|의 최댓값과 최솟값의 합을 구하시오.





공간도형 & 벡터 : 개념에서 기출까지

38. 좌표공간에서 점 P(2, 1, 1)을 지나고, 직선 OP에 수직인 평면 α 가 x축, y축, z축과 만나는 점을 각각 A, B, C라고 할 때, 삼각형 ABC의 넓이는?

- (1) 18 (2) $12\sqrt{3}$ (3) $9\sqrt{6}$ (4) 24 (5) $18\sqrt{2}$

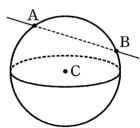
39.

좌표공간의 원점 이에서 두 평면 $\alpha: 3x-2y-z=28, \ \beta: 2x-y+3z=14$ 에 내린 수선의 발을 각각 A, B라 할 때, $|\overrightarrow{OA} - \overrightarrow{OB}|$ 의 값은?

- ① $5\sqrt{2}$ ② $\sqrt{51}$ ③ $\sqrt{52}$ ④ $\sqrt{53}$ ⑤ $3\sqrt{6}$

40.

중심이 C(1,1,2)이고 반지름의 길이가 3인 구와 직선 $x=y=\frac{-z}{2}$ 가 만나는 두 점을 A, B라 하자. $\overline{AP} = \overline{BP}$ 를 만족하는 점 P가 나타내는 도형의 방정식이 ax+y-bz+c=0일 때, $a^2+b^2+c^2$ 의 값을 구하여라.



공간도형 & 벡터 : 개념에서 기출까지

Part 1. 공간도형의 정답 및 해설

01_

 $\alpha\perp\overline{PO}$ 이므로 평면 α 위의 \overline{AO} 에 대하여 $\overline{AO}\perp\overline{PO}$ 이다. 따라서 삼각형 PAO가 직각삼각형이므로 $\overline{OA} = \sqrt{\overline{AP}^2 - \overline{OP}^2} = \sqrt{7^2 - 4^2} = \sqrt{33}$ $\therefore \overline{OQ} = \sqrt{\overline{OA}^2 - \overline{AQ}^2} = \sqrt{(\sqrt{33})^2 - (2\sqrt{6})^2} = 3$ 답 ③

02.

- ㄱ. \overline{OA} 와 꼬인 위치에 있는 모서리는 \overline{BC} , \overline{CD} \overline{BE} , \overline{DE} 로 4개이다. (참)
- ㄴ. \overline{AB} 를 \overline{CD} 로 평행이동하면 삼각형 OCD가 정삼각형이므로 \angle OCD = 60° , 따라서 \overline{AB} 와 \overline{OC} 가 이루는 각의 크기는 60° 이다. (거짓)
- \Box . \overline{BE} 를 \overline{OD} 로 평행이동하면 삼각형 OCD가 정삼각형이므로 \angle DOC = 60° , 따라서 \overline{BE} 와 \overline{OC} 가 이루는 각의 크기는 60° 이다. (참)

그러므로 보기 중 옳은 것은 ㄱ, ㄷ이다. 탭 ④

03.

두 면 ABC, ABE가 이루는 각의 크기를 θ $(0 \le \theta \le \pi)$, 두 면 ABC, OAB가 이루는 각의 크기를 θ' $(0 \le \theta' \le \pi)$ 이라 하면 $\cos \theta = \cos \theta' = \frac{1}{3}$ 이므로 \triangle OAB와 \triangle ABE는 한 평면 위에 있다. 또한, \triangle OAC와 \triangle ACD, \triangle OBC와 \triangle BCF도 각각 한 평면 위에 있다.

따라서 사각형 OADC는 마름모이므로 $\overline{OC}//\overline{AD}$ 이고, 마찬가지 방법으로 $\overline{OC}//\overline{BF}$ 이다. 따라서 \overline{OC} 와 평행한 모서리는 2개다.

답 ②

공간도형 & 벡터 : 개념에서 기출까지

04.

 $\overline{AB}=\overline{AE}$ 이므로 점 B의 면 AFGD 위로의 정사영은 \overline{AF} 의 중점 M이 되고, 점 H의 정사영은 \overline{DG} 의 중점 N이 된다. 따라서 $\overline{BH}=2\sqrt{6}$ 이고, $\overline{MN}=4$ 이므로

$$\cos\theta = \frac{2}{\sqrt{6}}$$

$$\therefore 36\cos^2\theta = 24$$

답 24

05.

육각형 PQRSTU와 점 O를 밑면 ABCDEF로 정사영 시킨 도형을 각각 P'Q'R'S'T'U'와 O'라 하면 Δ O'P'Q', Δ O'Q'R'는 한 변의 길이가 4인 정삼각형 Δ O'S'T', Δ O'T'U'는 한 변의 길이가 2인 정삼각형 Δ O'R'S', Δ O'U'P'는 직각삼각형이다.

따라서 구하는 넓이는

$$\left(\frac{\sqrt{3}}{4} \times 4^2 + \frac{\sqrt{3}}{4} \times 2^2 + 2\sqrt{3}\right) \times 2 = 14\sqrt{3}$$

답 (5)

06. 두 구의 방정식을 연립하면 $y^2 - (y-5)^2 = 15$ $\therefore y = 4$ 따라서 두 구가 만나서 생기는 원의 방정식은 $x^2 + z^2 = 48$ 두 구가 만나서 생기는 원 S의 반지름의 길이는 $\sqrt{48}$ 이므로 이 원의 넓이는 48π 이다.

구 C_2 와 y축의 두 교점의 y좌표를 구하면

$$(y-5)^2 = 49$$
 : $y = -2$ 또는 $y = 12$

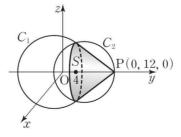
이때, 원점으로부터 더 멀리 떨어진 점

이 P이므로 P(0, 12, 0)

따라서 구하는 원뿔의 부피 V는

$$V\!=\!\!\frac{1}{3}\!\times\!48\pi\!\times\!(12\!-\!4)\!=\!128\pi$$

$$\therefore \frac{V}{\pi} = 128$$



공간도형 & 벡터 : 개념에서 기출까지

07.

- ¬. PR = PQ = 2
 PR // AC, PQ // OB, OB ⊥ AC
 ∴ ∠QPR = 90° 따라서 △PQR는 직각이등변삼각형이다. (참)
- ㄴ. 꼭짓점 O의 평면 ABC위로의 정사영은 삼각형ABC의 무게중심 G이다. 또, 점 P, R의 평면 ABC 위로의 정사영은 각각 \overline{AG} , \overline{CG} 의 중점이다. 따라서 오른쪽 그림과 같이 삼각형 PQR의 평면 ABC 위로의 정사영의 넓이는 $\Delta P'QR' = \Delta GR'P' + \Delta GP'Q$

$$\begin{split} &=\frac{1}{4}\bigg(\frac{1}{3}\,\triangle\,\mathrm{ABC}\bigg) + \frac{1}{2}\bigg(\frac{1}{6}\,\triangle\,\mathrm{ABC}\bigg) \\ &=\frac{1}{6}\,\triangle\,\mathrm{ABC} = \frac{1}{6} \times 4\,\sqrt{3} \\ &=\frac{2\,\sqrt{3}}{3}\ \ (\tilde{\Xi}) \end{split}$$

$$\Box$$
. $\overline{PQR} = \frac{1}{2} \times 2 \times 2 = 2$ 이므로

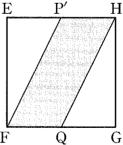
$$\cos\theta = \frac{\Delta P'QR'}{\Delta PQR} = \frac{\frac{2\sqrt{3}}{3}}{2} = \frac{\sqrt{3}}{3} \quad (\tilde{A})$$

따라서 보기 중 옳은 것은 ㄱ, ㄴ, ㄷ이다.

답 ⑤

08.

 \square PBQH의 평면 EFGH위로의 정사영은 오른쪽 그림의 어두운 부분과 같다. 따라서 구하는 정사영의 넓이는 $2\times1=2$



맵 4

공간도형 & 벡터 : 개념에서 기출까지

09.

두 평면 α , β 가 이루는 각의 크기를 θ 라 하면 $\overline{PA}=3\sqrt{2}$ 이므로 $\overline{OP}=3\sqrt{2}\sin 45^\circ=3$ 또, $\overline{OA}=3$ 이므로 $\overline{OQ}=3\tan 30^\circ=\sqrt{3}$

$$\therefore \cos\theta = \frac{3^2 + (\sqrt{3}\,)^2 - (\sqrt{3}\,)^2}{2 \cdot 3 \cdot \sqrt{3}} = \frac{\sqrt{3}}{2} \quad \mathrm{이므로}$$

$$\triangle APO = \frac{1}{2} \times 3 \times 3 = \frac{9}{2}$$

따라서 구하는 정사영의 넓이는

$$\frac{9}{2} \times \frac{\sqrt{3}}{2} = \frac{9\sqrt{3}}{4}$$

답 ①

10.

점 C에서 선분 BD에 내린 수선의 발을 M이라 하고,

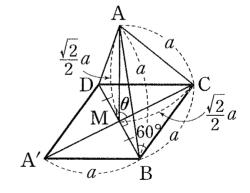
두 평면 ABD와 BCD가 이루는 각의 크기를 θ 라 하면 \angle AMC = θ 이다.

$$\overline{AM}^2 + \overline{MC}^2 = \overline{AC}^2$$

 $\therefore \theta = 90^{\circ}$

따라서 정사영의 넓이는

 \triangle ABD cos 90 $^{\circ} = 0$



대 (1)

공간도형 & 벡터 : 개념에서 기출까지

11.

사각형 \overrightarrow{ABFE} 의 두 대각선의 교점을 \overrightarrow{T} , \overrightarrow{EF} 의 중점을 \overrightarrow{K} 라 할 때, 평면 \overrightarrow{ADGF} 와 평면 \overrightarrow{BEG} 의 교선은 \overrightarrow{TG} 가 된다.

즉, $\overline{\text{TG}}$ 와 평면 EFGH가 이루는 예각은 $\triangle \text{GTK}$ 에서 $\angle \text{TGK}$ 이다.

이때, 정육면체의 한 변의 길이를 2a로 놓으면

 $\overline{GK} = \sqrt{5}a, \ \overline{TK} = a$

$$\therefore \cot(\angle TGK) = \cot\theta = \frac{\overline{GK}}{\overline{TK}} = \sqrt{5}$$

$$\therefore 3\cot^2\theta = 15$$

답 15

12.

 $\overline{\rm AD}$ 의 중점을 M, $\overline{\rm BC}$ 의 중점을 N이라 하면 $\Delta {\rm PAD}$ 와 $\Delta {\rm PBC}$ 의 이면각은 $\Delta {\rm PMN}$ 에서 $\angle {\rm MPN}$ 이다.

$$\overline{PM} = \overline{PN} = \sqrt{3}$$
, $\overline{MN} = 2$ 이므로

$$\cos(\angle MPN) = \frac{(\sqrt{3})^2 + (\sqrt{3})^2 - 2^2}{2 \cdot 3} = \frac{1}{3}$$

이고, 한 변의 길이가 2인 정삼각형에 내접하는 원의 넓이는 $S=\frac{\pi}{3}$ 이므로

$$S_3 = S_2 \cos \theta = S_1 \cos^2 \theta = S \cos^3 \theta = \frac{\pi}{81}$$

공간도형 & 벡터 : 개념에서 기훜까지

13. 사면체의 높이를 h라 하면

(사면체의 부피)
$$=\frac{1}{3} \times 12 \times h = 16$$
 $\therefore h = 4$

이때, \triangle BCD의 내접원의 반지름의 길이를 r라 하면

$$\triangle BCD = \frac{1}{2} \times 8 \times r = 12 \qquad \therefore r = 3$$

△BCD의 내접원의 중심을 I. 세 접점을 P.

Q. R라하면

$$\overline{AP} = \overline{AQ} = \overline{AR} = \sqrt{4^2 + 3^2} = 5$$

한편, 세 삼각형 ABC, ACD, ADB는 밑면

BCD와 이루는 각이 모두 같고 세 삼각형

ABC, ACD, ADB의 정사영이 각각

△IBC, △ICD, △IDB이므로

 $\triangle IBC + \triangle ICD + \triangle IDB$

$$=(\triangle ABC + \triangle ACD + \triangle ADB)\cos(\angle API)$$

$$\triangle BCD = (\triangle ABC + \triangle ACD + \triangle ADB) \cos (\angle API)$$

$$\therefore \triangle ABC + \triangle ACD + \triangle ADB = \frac{12}{\cos{(\angle API)}} = \frac{12}{\frac{3}{5}} = 20$$

[다른 풀이]

 $\triangle BCD$ 의 둘레의 길이가 8이고. $\overline{AP} = \overline{AQ} = \overline{AR} = 5$ 이므로

$$\triangle ABC + \triangle ACD + \triangle ADB = \frac{1}{2} \times 8 \times 5 = 20$$

답 20

14. \overline{BA} 위에 \overline{BP} =1인 점 P를 잡자.

점 P를 지나고 \overline{BA} 에 수직인 평면과 \overline{BC} . \overline{BD} 의 교점을 각각 Q. R라 하면

 $\triangle BPQ에서 \overline{BQ}=2. \overline{PQ}=\sqrt{3}$

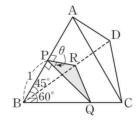
 $\triangle BPR에서 \overline{BR} = \sqrt{2}. \overline{PR} = 1$

따라서 △BQR에서

$$\overline{QR} = \sqrt{\overline{BQ}^2 + \overline{BR}^2} = \sqrt{6} \circ]$$
 $\exists I$

$$\triangle$$
PQR에서 $\cos\theta = \frac{3+1-6}{2\sqrt{3}\cdot 1} = -\frac{1}{\sqrt{3}}$

$$\therefore 60\cos^2\theta = 60 \times \frac{1}{3} = 20$$



공간도형 & 벡터 : 개념에서 기출까지

15.

$$xy$$
평면 위의 점의 $(x,y,0)$ 의 꼴이므로 점 C의 좌표를 $(x,y,0)$ 으로 놓으면 주어진 조건에 의해 $\overline{AB}^2=\overline{BC}^2=\overline{CA}^2$ $(x-2)^2+(y+3)^2+1=(x-1)^2+(y+2)^2+1$ 에서 $x-y=4$, 즉 $y=x-4$ \cdots \odot $\overline{AB}=\sqrt{(2-1)^2+(-3+2)^2+(-1-1)^2}=\sqrt{6}$ 이므로 \odot 을 $6=(x-2)^2+(y+3)^2+1$ 에 대입하면 $6=(x-2)^2+(x-4+3)^2+1$ $x^2-3x=0$, $x(x-3)=0$ \therefore $x=0$ 또는 $x=3$ \odot 에 대입하면 $x=0$, $y=-4$ 또는 $x=3$, $y=-1$ 이므로 점 C의 좌표는 $(0,-4,0)$ 또는 $(3,-1,0)$ 이다. 따라서 두 점 사이의 거리는 $\sqrt{3^2+3^2}=3\sqrt{2}$

16.

점 (1,1,3)을 지나고 xy평면, yz평면, zx평면에 동시에 접하므로 구의 중심의 좌표는 (r,r,r)이고, 구의 방정식은 $(x-r)^2+(y-r)^2+(z-r)^2=r^2$

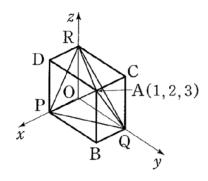
이 구가 점
$$(1,1,3)$$
을 지나므로 $(1-r)^2+(1-r)^2+(3-r)^2=r^2$ $2r^2-10r+11=0$ 이 때, 두 구의 반지름의 길이를 α , β 라 하면 $\alpha+\beta=5$, $\alpha\beta=\frac{11}{2}$ 따라서 두 구의 겉넓이의 합은 $4\pi(\alpha^2+\beta^2)=4\pi\{(\alpha+\beta)^2-2\alpha\beta\}$

 $=4\pi(25-11)=56\pi$

탭 ③

공간도형 & 벡터 : 개념에서 기출까지

17.



점 A에서 xy평면, yz평면, zx평면에 내린 수선의 발을 각각 B, C, D라 하면 삼수선의 정리에 의하여 육면체 ACRD — BQOP는 직육면체이고, B(1,2,0), C(0,2,3), D(1,0,3), P(1,0,0), Q(0,2,0), R(0,0,3)

(사면체 APQR의 부피) =(직육면체의 부피)-(사면체 APBQ의 부피)-(사면체 ACRQ의 부피) -(사면체 ARDP의 부피)-(사면체 OPQR의 부피)

이므로 구하는 부피는

$$6 - \frac{1}{3} \times \left(\frac{1}{2} \times 2 \times 1\right) \times 3 - \frac{1}{3} \times \left(\frac{1}{2} \times 2 \times 3\right) \times 1 - \frac{1}{3} \times \left(\frac{1}{2} \times 1 \times 3\right) \times 2 - \frac{1}{3} \times \left(\frac{1}{2} \times 1 \times 2\right) \times 3$$

$$= 6 - 4 = 2$$

답 ③

18.

평행사변형에서 두 대각선의 중점은 일치하므로

 $\overline{\mathrm{AD}_1}$ 이 대각선일 때, $\mathrm{D}_1(0,-1,-4)$, $\overline{\mathrm{BD}_2}$ 이 대각선일 때, $\mathrm{D}_2(4,1,-2)$,

 $\overline{CD_3}$ 이 대각선일 때, $D_3(-2,1,6)$ 이다.

따라서 삼각형 $D_1D_2D_3$ 의 무게중심은 $\left(\frac{2}{3}, \frac{1}{3}, 0\right)$ 이다.

$$\therefore 10(a+b-c) = 10$$
이다.

답 10

19.

두 구는 중심거리가 3이고, 두 구의 반지름의 길이의 합은 3이므로 두 구는 서로 외접한다. 반지름의 길이가 2, 1인 두 구의 중심을 각각 O_1 , O_2 라 하고, 두 구의 공통외접선이 구 O_1 과 만나는 점을 P, 구 O_2 와 만나는 점을 Q라 하자.

공간도형 & 벡터 : 개념에서 기출까지

이때, 점 P에서 직선 O_1O_2 에 내린 수선의 발을 H_1 , 점 Q에서 선분 O_1O_2 에 내린 수선의 발을 H_2 , 점 H_2 에서 직선 PQ에 내린 수선의 발을 H_3 이라 하면 ΔQH_2H_3 에서 $\overline{QH_3}=1$, $\overline{QH_2}=3$ 이므로 $\overline{H_2H_3}=2\sqrt{2}$

또한, $\triangle \mathsf{QPH_1} \hookrightarrow \triangle \mathsf{QH_2H_3}$ 이므로 $\overline{\mathsf{PH_1}} = \frac{4}{3}\sqrt{2}$ 마찬가지 방법으로 $\overline{\mathsf{QH_2}} = \frac{2}{3}\sqrt{2}$ 따라서 구하는 직원뿔대의 윗면의 넓이와 아랫면의 넓이의 합은

$$\left(\frac{2}{3}\sqrt{2}\right)^2\pi + \left(\frac{4}{3}\sqrt{2}\right)^2\pi = \frac{40}{9}\pi$$
 답 ④

20.

두 점 A(6,0,0), B(0,8,0)에서 $\overline{AB}=10$ 이므로 $\triangle ABC$ 의 넓이가 10이면 높이가 2이다. 즉, 도형 T는 \overline{AB} 를 회전축으로 하고 밑면인 원의 반지름의 길이가 2인 속이 비어있는 원기둥 모양이다. 이때, 원점 O에서 \overline{AB} 에 이르는 수선의 길이가 $\frac{24}{5}$ 이고, \overline{OC} 의 최솟값은

(원점 O에서 $\overline{\rm AB}$ 까지의 거리)-2 $\overline{\rm OC}$ 의 최솟값은 $\frac{14}{5}$ 이다.

답 ⑤

21.

구의 중심이 A(0,3,4)이므로 두 점 P, Q는 P(0,3,0), Q(0,0,4)이다.

구의 중심에서 \overline{PQ} 에 내린 수선의 발을 H라 하면 $\overline{AH} = \frac{12}{5}$ 이고, 구의 반지름의 길이는 3이므로

직선 PQ가 구와 만나는 두 점 사이의 거리는 $2\sqrt{3^2-\left(\frac{12}{5}\right)^2}=\frac{18}{5}$

답 ⑤

22.

구의 반지름의 길이가 13이고, 구의 중심에서 점 P의 자취인 원까지의 거리가 12이므로 점 P의 자취는 반지름의 길이가 5인 원이다.

또한, 구의 중심에서 점 Q의 자취인 원까지의 거리가 5이므로 점 Q의 자취는 반지름의 길이가 12인 원이다.

이때, 점 P에서 점 Q의 자취인 원에 내린 수선의 발을 H라 하면 \overline{PQ} 의 길이가 최소일 때는 $\overline{PH}=17$, $\overline{QH}=7$ 이므로

$$\overline{PQ} = \sqrt{17^2 + 7^2} = \sqrt{338}$$
 $\therefore \overline{PQ}^2 = 338$

답 ⑤

E(-2,0,0)

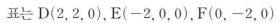
공간도형 & 벡터 : 개념에서 기출까지

D(2, 2, 0)

23.

접었을 때 사면체가 되므로 두 점 E, F는 각각 \overline{AB} 와 \overline{BC} 의 중 점이다.

정사각형의 대각선의 교점을 원 점으로 하면 세 점 D, E, F의 좌



A(x, y, z)라 하면

$$\overline{AD}^2 = (x-2)^2 + (y-2)^2 + z^2 = 16$$

$$\overline{AE}^2 = (x+2)^2 + y^2 + z^2 = 4$$

$$\overline{AF}^2 = x^2 + (y+2)^2 + z^2 = 4$$

⊙, ℂ, ℂ을 연립하여 풀면

$$x = -\frac{2}{3}, y = -\frac{2}{3}, z = \pm \frac{4}{3}$$

이때. △DEF의 넓이가 6이므로 사면체 ABCD의 부피는

$$\frac{1}{3} \times 6 \times \left| \pm \frac{4}{3} \right| = \frac{8}{3}$$

답 ①

24.

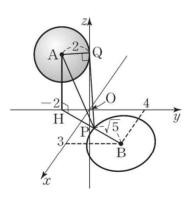
구와 원의 중심을 각각 A(0, -2, 5), B(3, 4, 0)이라 하고 점 A에서 xy평면에 내린 수선의 발을 H(0, -2, 0)이라하자. 원과 \overline{BH} 의 교점을 P라하면 원위의 점 중에서 점 A에 이르는 거리가최소인 점이 점 P이다.

점 P에서 구에 한 접선을 그었을 때의 접점을 Q라 하면

$$\overline{HP} = \overline{BH} - \sqrt{5} = \sqrt{3^2 + 6^2} - \sqrt{5} = 2\sqrt{5}$$

$$\overline{AP} = \sqrt{\overline{AH}^2 + \overline{HP}^2} = \sqrt{5^2 + (2\sqrt{5})^2} = 3\sqrt{5}$$

$$\therefore \overline{PQ} = \sqrt{\overline{AP}^2 - \overline{AQ}^2} = \sqrt{45 - 4} = \sqrt{41}$$



답 ②

공간도형 & 벡터 : 개념에서 기출까지

25.

BD:
$$\overline{DC} = \triangle PBD : \triangle PDC = 2:5$$
 이므로

$$\overrightarrow{AD} = \frac{5\overrightarrow{AB} + 2\overrightarrow{AC}}{7} = \frac{5\overrightarrow{b} + 2\overrightarrow{c}}{7}$$
또, $\overline{AP} : \overline{PD} = \triangle PAB : \triangle PBD = 3:2$ 이므로
$$\overrightarrow{AP} = \frac{3}{5}\overrightarrow{AD} = \frac{3}{5} \cdot \frac{5\overrightarrow{b} + 2\overrightarrow{c}}{7} = \frac{15}{35}\overrightarrow{b} + \frac{6}{35}\overrightarrow{c}$$

$$\therefore x + y = \frac{15}{35} + \frac{6}{35} = \frac{3}{5}$$

26.

$$\overrightarrow{AB} = \overrightarrow{a}$$
, $\overrightarrow{AD} = \overrightarrow{b}$, $\overrightarrow{AE} = \overrightarrow{c}$ 라 하면 $\overrightarrow{AS} = m\overrightarrow{AG} = m(\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c})$ ① 또, S는 평면 CHF위의 점이므로 $\overrightarrow{CS} = x\overrightarrow{CH} + y\overrightarrow{CF}$

$$\overrightarrow{AS} = \overrightarrow{AC} + \overrightarrow{CS}$$

$$= (\overrightarrow{a} + \overrightarrow{b}) + x\overrightarrow{CH} + y\overrightarrow{CF} = (\overrightarrow{a} + \overrightarrow{b}) + x(-\overrightarrow{a} + \overrightarrow{c}) + y(-\overrightarrow{b} + \overrightarrow{c})$$

$$= (1 - x)\overrightarrow{a} + (1 - y)\overrightarrow{b} + (x + y)\overrightarrow{c}$$
 \bigcirc

①, ⓒ에서

$$1-x=1-y=x+y=m$$

$$\therefore x = y = \frac{1}{3}, \quad m = \frac{2}{3} \qquad \qquad \therefore 6m = 6 \times \frac{2}{3} = 4$$

27.

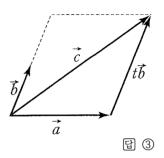
$$\overrightarrow{OP} = x\overrightarrow{OA} + y\overrightarrow{OB} = x\overrightarrow{OA} + \frac{y}{3}(3\overrightarrow{OB})$$
 $x \ge 0, \ y \ge 0, x + \frac{y}{3} = 1$ 이므로 점 P의 자취는 선분 AB'이다.
$$\therefore \overrightarrow{AB'}^2 = \overrightarrow{OA}^2 + \overrightarrow{OB'}^2 - 2\overrightarrow{OA} \cdot \overrightarrow{OB'} \cdot \cos \frac{\pi}{3} = 4^2 + 12^2 - 2 \cdot 4 \cdot 12 \cdot \frac{1}{2} = 112$$
 따라서 점 P가 그리는 도형의 길이는
$$\overrightarrow{AB'} = \sqrt{112} = 4\sqrt{7}$$

공간도형 & 벡터 : 개념에서 기출까지

28.

 $\stackrel{
ightarrow}{c}=\stackrel{
ightarrow}{a}+\stackrel{
ightarrow}{t}$ 이므로 오른쪽과 같은 평행사변형을 생각할 수 있다. 그런데 $\stackrel{
ightarrow}{c}$ 가 $\stackrel{
ightarrow}{a}$ 와 $\stackrel{
ightarrow}{b}$ 가 이루는 각을 이등분 하는 것은 $\stackrel{
ightarrow}{c}$ 가 마름모의 대각선이 될 때이므로 $t|\stackrel{
ightarrow}{b}|=|\stackrel{
ightarrow}{a}|$

$$\therefore t = \frac{\left| \overrightarrow{a} \right|}{\left| \overrightarrow{b} \right|} = \frac{\sqrt{5}}{\sqrt{2}} = \frac{\sqrt{10}}{2}$$



29.

$$\overrightarrow{AB} = \overrightarrow{a}$$
, $\overrightarrow{AC} = \overrightarrow{b}$ 라 하면 $\overrightarrow{AE} = \frac{1}{2}\overrightarrow{AB} + \frac{1}{5}\overrightarrow{AC} = \frac{1}{2}\overrightarrow{a} + \frac{1}{5}\overrightarrow{b}$

$$\therefore \overrightarrow{AD} = t\overrightarrow{AE} = t\left(\frac{1}{2}\overrightarrow{a} + \frac{1}{5}\overrightarrow{b}\right) = \frac{5\overrightarrow{ta} + 2t\overrightarrow{b}}{10} \quad (단, \ t \neq 0)$$

점 D는 선분 BC를 내분하는 점이므로

$$5t + 2t = 10 \qquad \qquad \therefore t = \frac{10}{7}$$

따라서
$$\overrightarrow{AD} = \frac{10}{7} \overrightarrow{AE}$$
이므로 $|\overrightarrow{AE}| = \frac{7}{10} |\overrightarrow{AD}| = \frac{7}{10} \times 50 = 35$

답 ⑤

30.

점 G는
$$\triangle$$
ABC의 무게중심이므로 $\overrightarrow{PG} = \frac{\overrightarrow{PA} + \overrightarrow{PB} + \overrightarrow{PC}}{3}$

$$3|\overrightarrow{PG}| = |\overrightarrow{PA} + \overrightarrow{PB} + \overrightarrow{PC}| = 6$$
 $\therefore |\overrightarrow{PG}| = 2$
또한, $\overrightarrow{GQ} = \overrightarrow{GO} + \overrightarrow{GP}$ 에서 $\overrightarrow{GQ} - \overrightarrow{GO} = \overrightarrow{GP}$

$$\therefore \overrightarrow{OQ} = \overrightarrow{GP}$$

$$\therefore |\overrightarrow{OQ}| = |\overrightarrow{GP}| = |\overrightarrow{PG}| = 2$$

따라서 점 Q의 자취는 원점 O를 중심으로 하고 반지름의 길이가 2인 원이므로 Q가

그리는 도형의 길이는 4π 이다.

답 ③

공간도형 & 벡터 : 개념에서 기출까지

31.

$$\overrightarrow{x} = l\overrightarrow{OA} + m\overrightarrow{OB} + n\overrightarrow{OC} \circ | A |$$

$$\overrightarrow{x} \cdot \overrightarrow{OA} = 4, \overrightarrow{x} \cdot \overrightarrow{OB} = 2, \overrightarrow{x} \cdot \overrightarrow{OC} = 6 \circ | \Box \Xi$$

$$\overrightarrow{x} \cdot \overrightarrow{OA} = (l\overrightarrow{OA} + m\overrightarrow{OB} + n\overrightarrow{OC}) \cdot \overrightarrow{OA}$$

$$= l\overrightarrow{OA} \cdot \overrightarrow{OA} + m\overrightarrow{OB} \cdot \overrightarrow{OA} + n\overrightarrow{OC} \cdot \overrightarrow{OA}$$

$$= l|\overrightarrow{OA}|^2 + m|\overrightarrow{OA}||\overrightarrow{OB}|\cos\frac{\pi}{3} + n|\overrightarrow{OA}||\overrightarrow{OC}|\cos\frac{\pi}{3}$$

$$= l + \frac{1}{2}m + \frac{1}{2}n = 4 \qquad \cdots \qquad \bigcirc$$

같은 방법으로 계산하면

$$\overrightarrow{x} \cdot \overrightarrow{OB} = \frac{1}{2}l + m + \frac{1}{2}n = 2$$
 \bigcirc $\overrightarrow{x} \cdot \overrightarrow{OC} = \frac{1}{2}l + \frac{1}{2}m + n = 6$ \bigcirc

$$\bigcirc + \bigcirc + \bigcirc \Rightarrow$$
 하면 $2(l+m+n)=12$ $\therefore l+m+n=6$

$$l+m+n=6$$

답 4

32.

타원
$$\frac{x^2}{25}+\frac{y^2}{16}=1$$
의 두 초점의 좌표를 $\mathrm{F}(c,0),\;\mathrm{F}'(-c,0)$ 이라 하면 $c=\sqrt{25-16}=3$

$$: F(3,0), F'(-3,0)$$

점 P의 좌표를 (a,b)라 하면

$$\overrightarrow{FP} = \overrightarrow{OP} - \overrightarrow{OF} = (a, b) - (3, 0) = (a - 3, b)$$

$$\overrightarrow{\mathbf{F'P}} = \overrightarrow{\mathbf{OP}} - \overrightarrow{\mathbf{OF'}} = (a,b) - (-3,0) = (a+3,b)$$

$$\therefore \overrightarrow{FP} \bullet \overrightarrow{F'P} = (a-3)(a+3) + b^2 = a^2 + b^2 - 9 \qquad \cdots$$

한편, 점 P(a,b)는 타원 위의 점이므로

$$\frac{a^2}{25} + \frac{b^2}{16} = 1$$
, $\stackrel{>}{=} b^2 = 16 - \frac{16}{25}a^2$

 \bigcirc 을 \bigcirc 에 대입하여 정리하면 $\overrightarrow{FP} \cdot \overrightarrow{F'P} = \frac{9}{25}a^2 + 7 \ (-5 \le a \le 5)$

따라서 구하는 최댓값은 $a=\pm 5$ 일 때이므로 9+7=16

공간도형 & 벡터 : 개념에서 기출까지

33.

- ㄱ. \overrightarrow{OP} 와 \overrightarrow{OQ} 가 이루는 각의 크기를 θ 라고 하면 $0 \le \theta \le \frac{\pi}{3}$ 이므로 $\frac{1}{2} \le \cos\theta \le 1$ 이다. 따라서 $\overrightarrow{OP} \cdot \overrightarrow{OQ} = |\overrightarrow{OP}||\overrightarrow{OQ}|\cos\theta = 1 \cdot 1 \cdot \cos\theta$ 이므로 $\overrightarrow{OP} \cdot \overrightarrow{OQ}$ 의 최댓값은 1이다. (참)
- ㄴ. $|\overrightarrow{OP} + \overrightarrow{OQ}|^2 = |\overrightarrow{OP}|^2 + 2\overrightarrow{OP} \cdot \overrightarrow{OQ} + |\overrightarrow{OQ}|^2 = 1^2 + 2|\overrightarrow{OP}||\overrightarrow{OQ}|\cos\theta + 1^2$ $= 2 + 2\cos\theta$ 이 때, $\frac{1}{2} \le \cos\theta \le 1$ 이므로 $3 \le 2 + 2\cos\theta \le 4$ 따라서 $|\overrightarrow{OP} + \overrightarrow{OQ}|$ 의 최댓값은 2이다. (참)
- ㄷ. $|\overrightarrow{OP} \overrightarrow{OQ}|^2 = |\overrightarrow{OP}|^2 2\overrightarrow{OP} \cdot \overrightarrow{OQ} + |\overrightarrow{OQ}|^2 = 1^2 2|\overrightarrow{OP}||\overrightarrow{OQ}|\cos\theta + 1^2 = 2 2\cos\theta$ 이 때, $\frac{1}{2} \le \cos\theta \le 1$ 이므로 $0 \le 2 2\cos\theta \le 1$ 따라서 $|\overrightarrow{OP} \overrightarrow{OQ}|$ 의 최솟값은 0이다. (거짓)

34.

두 직선 l, m은 서로 평행하다. 직선 l위의 한 점 P(-2,2,4)와 직선 m위의 임의의 한 점 Q(2t,t,-t)에 대해 \overrightarrow{PQ} 가 직선 l에 수직일 때, $|\overrightarrow{PQ}|$ 가 직선 l과 m사이의 거리가 된다. $\overrightarrow{PQ}=(2t+2,t-2,-t-4)$ 이므로

$$\overrightarrow{PQ} \bullet (2, 1, -1) = (2t + 2, t - 2, -t - 4) \bullet (2, 1, -1)$$

$$= 4t + 4 + t - 2 + t + 4 = 0 \qquad \therefore t = -1$$

$$\therefore \overrightarrow{PQ} = (0, -3, -3)$$

따라서 $|\overrightarrow{PQ}| = \sqrt{0^2 + (-3)^2 + (-3)^2} = 3\sqrt{2}$ 이므로

△ABC의 넓이는

$$\frac{1}{2} \cdot \overline{\mathbf{AB}} \cdot | \overrightarrow{\mathbf{PQ}} | = \frac{1}{2} \cdot 6 \cdot 3\sqrt{2} = 9\sqrt{2}$$

공간도형 & 벡터 : 개념에서 기출까지

35.

점 A에서 직선 l에 내린 수선의 발을 H(t+1, -t+2, 2t+1)이라 하면

$$\overrightarrow{AH} = \overrightarrow{OH} - \overrightarrow{OA} = (t, -t+4, 2t-2)$$

이 때, $\overrightarrow{AH} \perp l$ 이므로

$$(t, -t+4, 2t-2) \cdot (1, -1, 2) = 0$$
 $\therefore t = \frac{4}{3}$

따라서
$$\overrightarrow{AH} = \left(\frac{4}{3}, \frac{8}{3}, \frac{2}{3}\right)$$
이므로 $|\overrightarrow{AH}| = \frac{2\sqrt{21}}{3}$

이 때, 정육각형의 한 변의 길이를 a라 하면

$$a = \overline{AB} = \frac{2}{\sqrt{3}} \overline{AH} = \frac{4\sqrt{7}}{3}$$

답 ③

36.

윗면과 아랫면의 중심을 각각 O_1, O_2 라 하면 \overline{AB} 가 윗면의 지름이므로 $\overline{AO_1} + \overline{BO_1} = \overrightarrow{0}$ 이다.

$$\overrightarrow{AP} + \overrightarrow{BQ}$$

$$= (\overrightarrow{AO_1} + \overrightarrow{O_1O_2} + \overrightarrow{O_2P}) + (\overrightarrow{BO_1} + \overrightarrow{O_1O_2} + \overrightarrow{O_2Q})$$

$$= (\overrightarrow{AO_1} + \overrightarrow{BO_1}) + 2\overrightarrow{O_1O_2} + (\overrightarrow{O_2P} + \overrightarrow{O_2Q})$$

$$=2\overrightarrow{O_1O_2}+(\overrightarrow{O_2P}+\overrightarrow{O_2Q})$$

PQ가 밑면의 지름일 때, 최솟값

$$|\overrightarrow{AP} + \overrightarrow{BQ}| = 2|\overrightarrow{O_1O_2}| = 8$$
을 갖는다.

두 점 P,Q가 일치할 때, 최댓값

$$|\overrightarrow{AP} + \overrightarrow{BQ}| = 2|\overrightarrow{O_1O_2} + \overrightarrow{O_2P}| = 2\sqrt{4^2 + 3^2} = 10$$
을 갖는다.

따라서 최댓값과 최솟값의 합은 18이다.

공간도형 & 벡터 : 개념에서 기출까지

37.

$$\overrightarrow{OD} = \frac{1}{2} \overrightarrow{b} + \frac{1}{2} \overrightarrow{c} \text{ 이므로 } \overrightarrow{OP} = \frac{1}{6} \overrightarrow{b} + \frac{1}{6} \overrightarrow{c}$$

$$\overrightarrow{OE} = \frac{1}{2} \overrightarrow{a} + \frac{1}{2} \overrightarrow{c} \text{ 이므로 } \overrightarrow{OQ} = \frac{1}{6} \overrightarrow{a} + \frac{1}{6} \overrightarrow{c}$$

$$\overrightarrow{OR} = (1-s)\overrightarrow{OA} + s \overrightarrow{OP} \overset{\rightarrow}{\leftrightarrow} \overset{\rightarrow}{\leftrightarrow}$$

답 343

38.

평면 α 는 점 P(2, 1, 1)을 지나고

삼각형 ABC의 넓이는 $\frac{1}{2} \times 3\sqrt{3} \times 6\sqrt{2} = 9\sqrt{6}$

OP = (2, 1, 1)에 수직이므로
 α: 2(x-2)+1(y-1)+1(z-1)=0
 α: 2x+y+z=6
 따라서 세 점 A, B, C의 좌표는
 A(3, 0, 0), B(0, 6, 0), C(0, 0, 6)
 따라서 삼각형 ABC는 AB = AC인 이등변삼각형이고, BC의 중점이 (0, 3, 3)이므로

답 ③

공간도형 & 벡터 : 개념에서 기출까지

39.

두 평면 α , β 의 법선벡터가 각각 (3, -2, -1), (2, -1, 3)이므로

(i) 두 점 O와 A를 지나는 직선의 방정식은

$$\frac{x}{3} = \frac{y}{-2} = \frac{z}{-1}$$

$$\frac{x}{3} = \frac{y}{-2} = \frac{z}{-1} = t \text{ and } x = 3t, y = -2t, z = -t \cdots$$

 \bigcirc 을 평면 α 의 방정식에 대입하면

$$3 \cdot 3t - 2 \cdot (-2t) - (-t) = 28$$

따라서 점 A의 좌표는 (6, -4, -2)이다.

(ii) 두 점 O와 B를 지나는 직선의 방정식은

$$\frac{x}{2} = \frac{y}{-1} = \frac{z}{3}$$

$$\frac{x}{2} = \frac{y}{-1} = \frac{z}{3} = s \text{ of } k \text{ } x = 2s, y = -s, z = 3s \text{ } \cdots \text{ } \bigcirc$$

©을 평면 β의 방정식에 대입하면

$$2 \cdot 2s - (-s) + 3 \cdot 3s = 14$$

$$\therefore s = 1$$

따라서 점 B의 좌표는 (2, -1, 3)이다.

(i), (ii)에서

$$\overrightarrow{OA} - \overrightarrow{OB} = (6, -4, -2) - (2, -1, 3) = (4, -3, -5)$$

$$\therefore |\overrightarrow{OA} - \overrightarrow{OB}| = \sqrt{4^2 + (-3)^2 + (-5)^2} = 5\sqrt{2}$$

답 (1)

40.

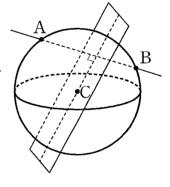
 $\overline{AP} = \overline{BP}$ 를 만족하는 점 P가 나타내는 도형은 선분 AB를 수직이등분하는 평면이며,

이 평면은 주어진 구의 중심을 지나고, AB와 수직이다.

 $\overrightarrow{\mathrm{AB}}$ 와 직선 $x=y=rac{-z}{2}$ 의 방향벡터인 $\overrightarrow{d}=(1,1,-2)$ 는 평행하므로

점 P가 나타내는 도형은 \overrightarrow{d} 가 법선벡터이고 점 $\mathbb{C}(1,1,2)$ 를 지나는 평면이다. 즉, 이 평면의 방정식은

$$1 \cdot (x-1) + 1 \cdot (y-1) + (-2) \cdot (z-2) = 0$$



$$\therefore x + y - 2z + 2 = 0$$
 이므로, $a = 1$, $b = 2$, $c = 2$ 에서 $a^2 + b^2 + c^2 = 1^2 + 2^2 + 2^2 = 9$