이차함수 공통접선 뒷북과 확장
게시글 주소: https://m.orbi.kr/00068696503
오랜만에 오르비 들어와서 눈팅이나 좀 하다가
수학 질문글을 발견했습니다.
질문은 아래와 같습니다.
(원본링크는 댓글에 있어요.)
아래 그림과 같이 교점이 없고 최고차 부호 다른 두 이차함수에 대해 반드시 두 개의 공통접선이 존재하냐는 겁니다.
여러분은 어떻게 생각하시나요?
다른 좋은 방법도 많겠다만...
질문을 보자마자 제가 떠올린 건 차이함수입니다.
저 그림은 사실,
이거랑 똑같은 그림이에요.
"이거"가 뭐냐면 축이 일치되어 있고 부호는 다른 이차함수입니다.
이 경우에는 당연히 접선 두 개 날릴 수 있겠죠.
그림이 선대칭이므로 한쪽에 그을 수 있다면
그 반대편에도 똑같이 그을 수 있으니까요.
두 접선은 기울기의 절댓값도 같을 겁니다.
그럼 요지는 이겁니다.
왜 질문자의 그림이 위 그림으로 바뀔 수 있는 것일까요?
어... 답은 되게 간단한데요,
그냥 그림의 모든 함수에다가 적절한 일차함수를 빼줘서
축을 움직여가지고 반드시 일치시킬 수 있기 때문입니다.
근데 그림의 모든 함수에 적절한 일차함수를 뺀다는 게 도대체 무슨 말일까요?
아래 평가원 기출 문제를 보겠습니다.
일단 문제상황을 그려보면 다음과 같습니다.
근데 여기 보이는 모든 함수에다가 y=ax를 뺄거에요.
이때 중요한 점은, 교점의 x좌표들이 모두 유지된다는 것입니다.
왜일까요?
방정식의 관점에서 보면 그 답을 쉽게 찾을 수 있습니다.
방정식 f(x)=ax+b의 해를 구하나,
방정식 f(x)-ax= b의 해를 구하나
당연히 똑같은 해가 나올 겁니다.
두 접선이 만나는 점의 x좌표, 즉 k는 왜 유지되는지도 볼까요?
왼쪽 빨간색 접선 식을 mx+n, 오른쪽 접선 식을 px+q라 할게요.
그러면...
위를 계산하나 아래를 계산하나 해는 똑같겠죠.
그래서 전체 그림에 동일한 함수를 빼도 x좌표는 유지가 되는 겁니다.
그래서 한 번 빼볼게요.
그럼 이렇게 나올 겁니다.
사차함수가 선대칭이므로 k는 아무 계산 없이 1/2이라는 걸 알 수 있어요.
전체 그림에 함수를 "빼는" 것만 가능한가요?
아니요!
전체 그림에 함수를 나눌 수도 있습니다.
이미 여러분들이 아주 많이 쓰고 있는 스킬이에요.
궁금한 분들은 아래 링크를 타고 들어가시면 됩니다.
아 가기 전에 좋아요는 누르고 가주세요!!!
도움이 됐다면요.
#무민
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
경제학과 가고싶어서 탐구과목을 경제로 바꿀까 생각중입니다 원래는 물지 했는데요...
-
사전예약하면 주는 수학 전자책 기출 트레이닝북 풀어본 사람 있나요...? 난이도 어느정도 됨?
-
선넘질받받아요 22
시간이너무많이남아서 심심해요 아무도질문안해주면 글삭튀할거임
-
20년 살면서 요즘만큼 똥줄타는 시기는 처음인듯 ㄹㅇ 하루에 한끼 먹을정도로 정신적 스트레스가 ㅈ됨
-
S대에 가고 싶다 13
-
2시간 동안 멍때리기 대회 중 ㅋㅋ
-
공부알바기타연습운동독서 다 해야되는데 머리깨지겟농
-
왜 처음에 물체가 붙어있으면 어떤 힘을 줘도 붙어있을까요?? 0
그냥 물리하다가 갑자기 궁금해져서요.. 정지해있는 두 물체에 마찰력이 없을때...
-
검색어 1위 5
사수.. 다들 꽤 연배 있으시구나
-
좋아해야해… 슬퍼해야해…?
-
자금모으고 라스트댄스 그 후엔 결과가 어떻게되든 수험말고 독립에 힘을 써야겠다...
-
답 찾는거만 하던사람한테 답을 찾지말고 무지성으로 우쭈쭈해달라 하면 어케함 ㅋㅋ
-
. 진짜 나 물리를 어지간히도 좋아했구나
-
모의지원자 점점 채워질때 마다 합격컷이랑 제점수가 가까워짐 역시 짠게 맞다니까.
-
겨울에 김현우+김범찬 수업들으려고 하는데 두 분 다 미적만 하시더라고요 공통을 아예...
-
경희대 앞 스타벅스 26
찾아오면나특정가능
-
공감지능도 지능이다. 10
T다 ㅇㅈㄹ하면서 공감지능 없는거좀 티내지말자 엠비티아이가 언제적인데 아오ㅆ
-
난 분명 양치 하고 가는데 계속 나보고 양치 꼼꼼히 하래
-
24수능 88 87 1 82 83 25수능 87 94 1 98 97 (가채점 메가 기준)
-
https://orbi.kr/00070126963 어제 메인도 보내고 좋네
-
저는 올해 강남대성 s2를 다녔습니다. 6월 강모 제외하고는 한번도 빌보드에...
-
미치겠다
-
왜이러지
-
질문받음 4
ㄱㄱ
-
주문할 때나 미팅이나 썸남?? 남친후보인 썸남?앞에서만 하이톤이지
-
고등반인데 통통이가 잘 할 수 있을까요.. 애들 모르는 걸 내가 못 풀면 어쩌지ㅋㅋㅋ
-
좀 쓴지 오래 되면 지울 수록 더 드러워짐 그래서 아 샤프심 때문에 번지는건가?...
-
목캔디 나만 좋아함? 10
왜 목캔디가 틀딱 취향이 된 거냐
-
저년차구요 수도권에서만 일해봤습니다 치대생활 수련필요성 치과계상황 이런거 물어보면...
-
하는거까지 외워야하는 사탐과목이 뭐뭐있나요? 쌍지 쌍사정돈가?
-
역시 명작은 명작 소재가 좀 자극적이여서그렇지 진짜 잘만든 영화
-
공부 시ㅣㅣㅣㅣ작
-
잠오네 2
.쿨쿨
-
영화보러감뇨 5
신남
-
해볼까 근데 귀찮네
-
그저 곁에 있어준대도
-
생윤 개아깝다 0
시험장은 다르다.... 그냥 소거해서 풀면되는데 왜 생각이 안났지...
-
생명1같은 경우는 아무리 공부량이 많아도 고정 50<< 이게 힘들잖아요. 사탐은...
-
근데 너무 숨겨져서 찾을 수가 없음
-
조용히 사는 중
-
뻥임뇨
-
나도 재수때까진 내가 재수로 대학 갈 줄 알았어ㅋㅋ
-
걍 태어날때 부터 의사에 대한 혐오를 가지고 태어나는 듯
-
제시문 내용 그대로 쓴 부분이 있었는데 큰 문제가 될까요?
-
심심해
-
오르비분들 답 맞추시는거 보니까 수리 3문제 다 맞은것같은데 인문 ㅍㅌㅊ로 썼으면...
-
커뮤에서만큼은 진실한 사람이고 싶음뇨
-
2개 다 사는게 좋나요 ? 차이가 머죠
질문자 원본 글입니다.
https://orbi.kr/00068687892
정시의벽이 쏘아올린 공
ㄷㄷ닉언
캬ㅑㅑㅑ무민 님ㄷㄷㄷ